Пирамиды прямоугольный треугольник рисунок

Геометрические фигуры. Прямоугольная пирамида.

Прямоугольная пирамида — это пирамида, в которой одно из боковых рёбер перпендикулярно основанию.

В этом случае, это ребро и будет высотой пирамиды.

Свойства пирамиды.

1. Когда все боковые ребра имеют одинаковую величину, тогда:

  • около основания пирамиды легко описать окружность, при этом вершина пирамиды будет проецироваться в центр этой окружности;
  • боковые ребра образуют с плоскостью основания одинаковые углы;
  • кроме того, верно и обратное, т.е. когда боковые ребра образуют с плоскостью основания равные углы, либо когда около основания пирамиды можно описать окружность и вершина пирамиды будет проецироваться в центр этой окружности, значит, все боковые ребра пирамиды имеют одинаковую величину.

2. Когда боковые грани имеют угол наклона к плоскости основания одной величины, тогда:

  • около основания пирамиды легко описать окружность, при этом вершина пирамиды будет проецироваться в центр этой окружности;
  • высоты боковых граней имеют равную длину;
  • площадь боковой поверхности равняется ½ произведения периметра основания на высоту боковой грани.

3. Около пирамиды можно описать сферу в том случае, если в основании пирамиды лежит многоугольник, вокруг которого можно описать окружность (необходимое и достаточное условие). Центром сферы станет точка пересечения плоскостей, которые проходят через середины ребер пирамиды перпендикулярно им. Из этой теоремы делаем вывод, что как около всякой треугольной, так и около всякой правильной пирамиды можно описать сферу;

4. В пирамиду можно вписать сферу в том случае, если биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в 1-ной точке (необходимое и достаточное условие). Эта точка станет центром сферы.

5. Конус будет вписанным в пирамиду, когда вершины их совпадут, а основание конуса будет вписанным в основание пирамиды. При этом вписать конус в пирамиду можно лишь в том случае, если апофемы пирамиды имеют равные величины (необходимое и достаточное условие);

6. Конус будет описанным около пирамиды, если их вершины совпадут, а основание конуса будет описано около основания пирамиды. При этом описать конус около пирамиды можно лишь в том случае, если все боковые ребра пирамиды имеют одинаковые величины (необходимое и достаточное условие). Высоты у этих конусов и пирамид одинаковы.

7. Цилиндр будет вписанным в пирамиду, если 1-но его основание совпадет с окружностью, которая вписана в сечение пирамиды плоскостью, параллельной основанию, а второе основание будет принадлежать основанию пирамиды.

8. Цилиндр будет описанным около пирамиды, когда вершина пирамиды будет принадлежать его одному основанию, а второе основание цилиндра будет описано около основания пирамиды. При этом описать цилиндр около пирамиды можно лишь в том случае, если основанием пирамиды служит вписанный многоугольник (необходимое и достаточное условие).

Формулы для определения объема и площади прямоугольной пирамиды.

V — объем пирамиды,

S — площадь основания пирамиды,

h — высота пирамиды,

Sb — площадь боковой поверхности пирамиды,

a — апофема (не путать с α) пирамиды,

P — периметр основания пирамиды,

n — число сторон основания пирамиды,

b — длина бокового ребра пирамиды,

α — плоский угол при вершине пирамиды.

Пирамида. Прямоугольная пирамида. Правильная пирамида. Объем пирамиды. Тетраэдр

Факт 1. Про произвольную пирамиду \(PA_1A_2. A_n\)
\(\bullet\) Многоугольник \(A_1. A_n\) – основание;
треугольники \(PA_1A_2, PA_2A_3\) и т.д. – боковые грани;
точка \(P\) – вершина;
отрезки \(PA_1, PA_2, . A_1A_2\) и т.д. – ребра.
\(\bullet\) Если в основании пирамиды лежит треугольник, то она называется \(<\color<<\small<тетраэдром>>>>\) .
\(\bullet\) \(<\color<<\small<Правильный \ тетраэдр>>>>\) — это треугольная пирамида, все грани которой – равносторонние треугольники.
\(\bullet\) Высота пирамиды – перпендикуляр, опущенный из вершины \(P\) к основанию.
\(\bullet\) \(<\color<<\small<Объем \ пирамиды>>>>\) \[<\color<<\large<3>S_<\text<осн>>h>>>>\] где \(S_<\text<осн>>\) – площадь основания, \(h\) – высота пирамиды.
\(\bullet\) Площадь боковой поверхности – сумма площадей всех боковых граней.
Площадь полной поверхности – сумма площади боковой поверхности и площади основания.

\(\bullet\) Заметим, что принято записывать название пирамиды, начиная с вершины.

Факт 2. Про прямоугольную пирамиду
\(\bullet\) Пирамида называется прямоугольной, если одно из ее боковых ребер ( \(SR\) ) перпендикулярно основанию (оно же будет и высотой).
\(\bullet\) Грани, образованные этим ребром, будут представлять собой прямоугольные треугольники ( \(\triangle SMR, \triangle SPR\) ).

Факт 3. Про правильную пирамиду
\(\bullet\) Пирамида называется правильной, если в основании лежит правильный многоугольник (все углы равны и все стороны равны) и выполнено одно из эквивалентных условий:

\(\sim\) боковые ребра равны;
\(\sim\) высота пирамиды проходит через центр описанной около основания окружности;
\(\sim\) боковые ребра наклонены к основанию под одинаковым углом.
\(\bullet\) Заметим, что у правильных многоугольников центры описанной и вписанной окружностей совпадают.

\(\bullet\) Заметим, что у правильной пирамиды все боковые грани – равные равнобедренные треугольники.
Высота этих треугольников, проведенная из вершины пирамиды, называется апофемой.

Треугольная пирамида и формулы для определения ее площади

Пирамида — геометрическая пространственная фигура, характеристики которой изучают в старших классах школы в курсе стереометрии. В данной статье рассмотрим треугольную пирамиду, ее виды, а также формулы для расчета площади ее поверхности.

О какой пирамиде пойдет речь?

Треугольная пирамида представляет собой фигуру, которую можно получить, если соединить все вершины произвольного треугольника с одной единственной точкой, не лежащей в плоскости этого треугольника. Согласно этому определению рассматриваемая пирамида должна состоять из исходного треугольника, который называется основанием фигуры, и трех боковых треугольников, которые имеют по одной общей стороне с основанием и соединены друг с другом в точке. Последняя называется вершиной пирамиды.

Вам будет интересно: Защита проекта: образец. Темы для защиты проекта. Требования к проектной работе

Рисунок выше демонстрирует произвольную треугольную пирамиду.

Рассматриваемая фигура может быть наклонной или прямой. В последнем случае перпендикуляр, опущенный из вершины пирамиды на ее основание, должен его пересекать в геометрическом центре. Геометрическим центром любого треугольника является точка пересечения его медиан. Геометрический центр совпадает с центром масс фигуры в физике.

Если в основании прямой пирамиды будет лежать правильный (равносторонний) треугольник, то она называется правильной треугольной. В правильной пирамиде все боковые стороны равны друг другу и представляют собой равносторонние треугольники.

Если высота правильной пирамиды такова, что ее боковые треугольники становятся равносторонними, то она называется тетраэдром. В тетраэдре все четыре грани равны друг другу, поэтому каждая из них может полагаться основанием.

Элементы пирамиды

К этим элементам относятся грани или стороны фигуры, ее ребра, вершины, высота и апофемы.

Как было показано, все стороны треугольной пирамиды являются треугольниками. Их число равно 4 (3 боковых и один в основании).

Вершины — это точки пересечения трех треугольных сторон. Не сложно догадаться, что для рассматриваемой пирамиды их 4 (3 принадлежат основанию и 1 — вершина пирамиды).

Ребра можно определить, как линии пересечения двух треугольных сторон, или как линии, которые соединяют каждые две вершины. Количество ребер соответствует удвоенному числу вершин основания, то есть для треугольной пирамиды оно равно 6 (3 ребра принадлежат основанию и 3 ребра образованы боковыми гранями).

Высота, как выше было отмечено, является длиной перпендикуляра, проведенного из вершины пирамиды к ее основанию. Если из этой вершины провести высоты к каждой из сторон треугольного основания, то они будут называться апотемами (или апофемами). Таким образом, пирамида треугольная имеет одну высоту и три апофемы. Последние равны друг другу для правильной пирамиды.

Основание пирамиды и его площадь

Поскольку основание для рассматриваемой фигуры в общем случае представляет собой треугольник, то для расчета его площади достаточно найти его высоту ho и длину стороны основания a, на которую она опущена. Формула для площади So основания имеет вид:

Если треугольник основания является равносторонним, тогда площадь основания треугольной пирамиды вычисляется по такой формуле:

То есть площадь So однозначно определяется длиной стороны a треугольного основания.

Боковая и общая площадь фигуры

Прежде чем рассматривать площадь треугольной пирамиды, полезно привести ее развертку. Она изображена на рисунке ниже.

Площадь этой развертки, образованной четырьмя треугольниками, является общей площадью пирамиды. Один из треугольников соответствует основанию, формула для рассматриваемой величины которого была записана выше. Три боковых треугольных грани в сумме образуют боковую площадь фигуры. Поэтому для определения этой величины достаточно к каждому из них применить записанную выше формулу для произвольного треугольника, а затем, сложить три полученных результата.

Если пирамида является правильной, то расчет площади боковой поверхности облегчается, поскольку все грани боковые представляют собой одинаковые равносторонние треугольники. Обозначим hb длину апотемы, тогда площадь боковой поверхности Sb можно определить так:

Эта формула следует из общего выражения для площади треугольника. Цифра 3 появилась в числители из-за того, что пирамида имеет три боковых грани.

Апотему hb в правильной пирамиде можно вычислить, если известна высота фигуры h. Применяя теорему Пифагора, получаем:

Очевидно, что общая площадь S поверхности фигуры равна сумме ее площадей боковой поверхности и основания:

Для правильной пирамиды, подставляя все известные величины, получаем формулу:

S = √3/4*a2 + 3/2*a*√(h2 + a2/12)

Площадь пирамиды треугольной зависит только от длины стороны ее основания и от высоты.

Пример задачи

Известно, что боковое ребро треугольной пирамиды равно 7 см, а сторона основания составляет 5 см. Необходимо найти площадь поверхности фигуры, если известно, что пирамида является правильной.

Воспользуемся равенством общего вида:

Площадь So равна:

So = √3/4*a2 = √3/4*52 ≈ 10,825 см2.

Для определения площади боковой поверхности, необходимо найти апотему. Не сложно показать, что через длину бокового ребра ab она определяется по формуле:

hb = √(ab2 — a2/4) = √(7 2 — 52/4) ≈ 6,538 см.

Тогда площадь Sb равна:

Sb = 3/2*a*hb = 3/2*5*6,538 = 49,035 см2.

Общая площадь пирамиды составляет:

S = So + Sb = 10,825 + 49,035 = 59,86 см2.

Заметим, что при решении задачи мы не использовали в расчетах значение высоты пирамиды.


источники:

http://shkolkovo.net/theory/157

http://1ku.ru/obrazovanie/40981-treugolnaja-piramida-i-formuly-dlja-opredelenija-ee-ploshhadi/