Пирамидальные числа треугольник паскаля

Треугольник Паскаля

Каждый из нас с раннего детства прекрасно знаком с такой простой и, на первый взгляд, понятной фигурой, как треугольник. Однако не все знают, что существует еще и совершенно удивительный треугольник, не похожий на все, что нам доводилось видеть раньше, — треугольник Паскаля, названный так в честь великого французского математика и философа Блеза Паскаля, описавшего его в 1653 году в своем «Трактате об арифметическом треугольнике». Несмотря на то, что первые сведения о треугольнике Паскаля относятся к незапамятным временам (Омар Хайам, занимавшийся не только философией, но и математикой, описал его в начале XII века со ссылкой на заимствование из источников, датированных более ранним временем), именно Б. Паскаль был первым, кто смог научно описать его свойства.

Треугольник Паскаля — иными словами, бесконечная числовая таблица, выполненная в форме треугольника, — прост, изящен и велик, как все гениальное: каждое число его равно сумме двух чисел, которые расположены над ним. Нетрудно догадаться, что этот треугольник может быть каким угодно большим — его можно продолжать беспредельно.

Первый ряд чисел (если считать своеобразные «диагонали» от вершины) — это единицы, второй ряд содержит натуральные числа, соответствующие номеру строки расположения числа. Все числа третьего ряда — 1, 3, 6, 10, 15, 21,28, 36, 45 и т.д. представляют собой треугольные числа, которые показывают, какое именно количество предметов (подобно шарам в бильярде) могут в совокупности образовать треугольник. Этот ряд замечателен еще и тем, что каждое его число является суммой натурального ряда чисел, например: 45 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 или 21 = 1 + 2 + 3 + 4 + 5 + 6 и т.д. Четвертый ряд чисел треугольника Паскаля (1, 4, 10, 20, 35, 56 и т.д.) содержит тетраэдрические (пирамидальные) числа, которые участвуют в воображаемом «строительстве» тетраэдра: на три уже имеющихся шара кладется еще один шар и получается — 4 и т.д. Пятый ряд треугольника, образованный гипертетраэдрическими числами 1, 5, 15, 35, 70 и т.д., поможет получить в воображении (поскольку возможен только в четырехмерном пространстве) гипертетраэдр: один шар объединяется с четырьмя, а те — с десятью и т.д. Еще более невообразимый пятимерный тетраэдр «выстраивается» с помощью чисел шестого ряда треугольника Паскаля: 1, 6, 21, 56, 126 и т.д.

Что касается горизонтальных линий, то все числа этих строк являются биномиальными коэффициентами, имеющими бесценное значение для комбинаторики, теории вероятностей, родоначальником которой в «соавторстве» с Ферма стал Б. Паскаль, и иных математических областей.

Одним из загадочных свойств треугольника Паскаля является быстрота нахождения суммы чисел ряда от начала до нужного нам числа. Для этого необходимо, найдя последнее слагаемое, обратить внимание на число, которое записано снизу и слева (если нумеровать ряды с правой стороны) или справа (если нумеровать ряды с левой стороны) от последнего слагаемого. Например, чтобы узнать, что в сумме дадут нам все числа четвертого ряда от 1 до 56, достаточно, найдя 56, взглянуть, что написано слева внизу: это число 126. Удивительно верно!

Кроме того, не догадываясь о собственном открытии (это было обнаружено только в XIX веке), Паскаль «зашифровал» в треугольнике известные числа последовательности Фибоначчи: 1, 6, 10, 4; 1, 5, 6, 1 и т.д.

Все три пирамиды O 1 OABC , O 1 ABB 1 A 1 и O 1 BCC 1 B 1 имеют общее ребро O 1 B , число точек в котором с целыми координатами равно n . Суммируя точки с целыми координатами во всех трех пирамидах, получаем равенство

из которого следует равенство

Аналогичным образом, рассматривая разбиение четырехмерного куба на четыре гиперпирамиды, можно получить следующее равенство

из которого следует равенство

В общем случае имеет место равенство

которое позволяет находить сумму 1 m + 2 m + … + n m через суммы меньших степеней.

В частности, имеет место формула

Рассмотрим числа, связанные с фигурными числами, образующие равнобедренный треугольник, называемый треугольником Паскаля. По боковым сторонам этого треугольника стоят единицы и всякое число, кроме этих единиц, получается как сумма двух чисел, расположенных над данным числом.

Таблица 1
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
……………..

Блез Паскаль посвятил этому треугольнику «Трактат об арифметическом треугольнике», опубликованный в 1653 г. В нем этот треугольник записывался в виде таблицы

Таблица 2
1 1 1 1 1 1
1 2 3 4 5
1 3 6 10
1 4 10
1 5
1

в которой каждое число равно сумме чисел, расположенных слева и сверху над ним. Будем называть его прямоугольным треугольником Паскаля. Таким образом, треугольник Паскаля отличается от прямоугольного треугольника, рассматривавшегося самим Паскалем, поворотом на 45 ° .
В действительности треугольник Паскаля был известен задолго до Паскаля. Итальянский математик Николо Тарталья в книге «Общий трактат о числе и мере (1556 – 1560 гг.) рассмотрел прямоугольник

в котором верхняя строка и левый столбец состоят из единиц, а каждое оставшееся число равно сумме чисел, расположенных слева и сверху над ним. Омар Хайям, бывший не только поэтом и философом, но и математиком, знал о треугольнике Паскаля (около 1100 г), в свою очередь, заимствовав его из более ранних китайских или индийских источников.
Несмотря на свою простоту, треугольник Паскаля обладает целым рядом интересных свойств. Упомянем некоторые из них.
1. Треугольник Паскаля симметричен относительно высоты.
2. Каждое число в прямоугольном треугольнике Паскаля равно сумме чисел предшествующей строки, начиная с первого до числа, стоящего непосредственно над данным числом.
3. Каждое число в прямоугольном треугольнике Паскаля, будучи уменьшено на 1, равно сумме чисел, заполняющих прямоугольник, ограниченный строкой и столбцом, на которых стоит данное число.
4. Третья строка и третий столбец прямоугольного треугольника Паскаля состоят из треугольных чисел.
5. Четвертая строка и четвертый столбец прямоугольного треугольника Паскаля состоят из пирамидальных чисел.
6. Сумма чисел n-ой строки треугольника Паскаля равна 2 n , так как при переходе от каждой строки к следующей сумма чисел удваивается, а для нулевой строки она равна 1.
Обозначим через число, стоящее на k-ом месте в n-ой строке треугольника Паскаля, начиная с нулевого места и нулевой строки. По определению, имеет место равенство
Выясним связь между числами треугольника Паскаля и биномиальными коэффициентами.
Биномиальными коэффициентами называются коэффициенты при x, получающиеся при возведении бинома 1 + x в степень n ³ 0.
Имеем

Обозначим через коэффициент при x k в разложении (1 + x ) n . Из приведенных выше разложений можно предположить, что имеет место равенство = . Действительно, по определению имеет место равенство

Найдем разложение для (1+x ) n +1 , представляя его в виде (1+x ) n (1+x). Имеем

Учитывая, что коэффициент при x k + 1 в последней сумме по определению равен , получаем формулу Сравнивая ее с формулой для чисел треугольника Паскаля, видим, что биномиальные коэффициенты и числа треугольника Паскаля получаются по тому же закону и, следовательно, имеет место равенство = .
Докажем, что для чисел треугольника Паскаля, а значит, и для биномиальных коэффициентов имеет место формула

где n ! ( читается эн факториал) равно произведению чисел 1, 2, …, n, и 0! считается равным единице.
Заметим, что приведенная формула имеет место в случае k = 0 и k = n . В общем случае достаточно проверить, что выполняется соотношение

Это делается непосредственно.

Самостоятельно решите следующие задачи:

1. Сколько нечетных чисел в 256-ой строке треугольника Паскаля?

2. Сколько чисел в 67-ой строке треугольника Паскаля делится на 67?

3. Прямоугольник n x m разбит сеткой на единичные квадраты. Сколькими способами можно пройти по линиям этой сетки из вершины A в вершину B , если из каждой ее вершины можно идти или направо, или вверх?

4. Имеется сеть дорог, изображенная на рисунке. Из точки A выходит 2 1000 человек. Одна половина из них идет направо, а вторая – налево. Дойдя до первого перекрестка, каждая группа разделяется: одна половина идет направо, а вторая – налево. Такое же разделение происходит на каждом перекрестке. Сколько человек придет в три крайних слева перекрестка В1, В2, В3 тысячного ряда перекрестков?

5. Докажите, что имеет место равенство

6. Найдите, чему равна сумма

5. В треугольнике

1 4 10 16 19 16 10 4 1

каждое число равно сумме трех ближайших к нему чисел предыдущей строки. В n -ой строке будут стоять 2 n +1 чисел, которые мы обозначим Докажите, что выполняются равенства:

а)

б)

Выясните алгебраический смысл этих чисел. Найдите для них формулы.

6. Определите аналог треугольника Паскаля в пространстве (тетраэдр Паскаля). Выясните его алгебраический смысл. Найдите формулу для его элементов.

1. Диофант. Арифметика и книга о многоугольных числах. – М.: Наука, 1974.

2. Гарднер М. Математические новеллы. – М.: Мир, 1974.
3. Кордемский Б.А. Математическая смекалка.- М.: Наука, 1991.
4. Оре О. Приглашение в теорию чисел. – М.: Наука, 1980.
5. Радемахер Г., Теплиц О. Числа и фигуры. – М.: Наука, 1966.
6. Успенский В.А. Треугольник Паскаля. – М.: Наука, 1979.

7. Яглом А.М., Яглом И.М. Неэлементарные задачи в элементарном изложении. – М.: Гос. изд. технико-теоретической литературы, 1954.

Треугольник Паскаля — формула, свойства и применение

Основная формула

Строки треугольника обычно нумеруются, начиная со строки n = 0 в верхней части. Записи в каждой строке целочисленные и нумеруются слева, начиная с k = 0, обычно располагаются в шахматном порядке относительно чисел в соседних строчках. Построить фигуру можно следующим образом:

  • В центре верхней части листа ставится цифра «1».
  • В следующем ряду — две единицы слева и справа от центра (получается треугольная форма).
  • В каждой последующей строке ряд будет начинаться и заканчиваться числом «1». Внутренние члены вычисляются путём суммирования двух цифр над ним.

Запись в n строке и k столбце паскалевской фигуры обозначается (n k). Например, уникальная ненулевая запись в самой верхней строке (0 0) = 1. С помощью этого конструкция предыдущего абзаца может быть записана следующим образом, образуя формулу треугольника Паскаля (n k) = (n — 1 k-1) + (n — 1 k), для любого неотрицательного целого числа n и любого целого числа k от 0 до n включительно. Трёхмерная версия называется пирамидой или тетраэдром, а общие — симплексами.

История открытия

Паскаль ввёл в действие многие ранее недостаточно проверенные способы использования чисел треугольника, и он подробно описал их в, пожалуй, самом раннем из известных математических трактатов, специально посвящённых этому вопросу, в труде об арифметике Traité du triangle (1665). За столетия до того обсуждение чисел возникло в контексте индийских исследований комбинаторики и биномиальных чисел, а у греков были работы по «фигурным числам».

Из более поздних источников видно, что биномиальные коэффициенты и аддитивная формула для их генерации были известны ещё до II века до нашей эры по работам Пингала. К сожалению, бо́льшая часть трудов была утеряна. Варахамихира около 505 года дал чёткое описание аддитивной формулы, а более подробное объяснение того же правила было дано Халаюдхой (около 975 года). Он также объяснил неясные ссылки на Меру-прастаара, лестницы у горы Меру, дав первое сохранившееся определение расположению этих чисел, представленных в виде треугольника.

Примерно в 850 году джайнский математик Махавира вывел другую формулу для биномиальных коэффициентов, используя умножение, эквивалентное современной формуле. В 1068 году Бхаттотпала во время своей исследовательской деятельности вычислил четыре столбца первых шестнадцати строк. Он был первым признанным математиком, который уравнял аддитивные и мультипликативные формулы для этих чисел.

Примерно в то же время персидский учёный Аль-Караджи (953–1029) написал книгу (на данный момент утраченную), в которой содержалось первое описание треугольника Паскаля. Позднее работа была переписана персидским поэтом, астрономом и математиком Омаром Хайямом (1048–1131). Таким образом, в Иране фигура упоминается как треугольник Хайяма.

Известно несколько теорем, связанных с этой темой, включая биномы. Хайям использовал метод нахождения n-x корней, основанный на биномиальном разложении и, следовательно, на одноимённых коэффициентах. Треугольник был известен в Китае в начале XI века благодаря работе китайского математика Цзя Сианя (1010–1070). В XIII веке Ян Хуэй (1238–1298) представил этот способ, и поэтому в Китае он до сих пор называется треугольником Ян Хуэя.

На западе биномиальные коэффициенты были рассчитаны Жерсонидом в начале XIV века, он использовал мультипликативную формулу. Петрус Апиан (1495–1552) опубликовал полный треугольник на обложке своей книги примерно в 1527 году. Это была первая печатная версия фигуры в Европе. Майкл Стифель представил эту тему как таблицу фигурных тел в 1544 году.

В Италии паскалевский треугольник зовут другим именем, в честь итальянского алгебраиста Никколо Фонтана Тарталья (1500–1577). Вообще, современное имя фигура приобрела благодаря Пьеру Раймонду до Монтрмору (1708), который назвал треугольник «Таблица Паскаля для сочетаний» (дословно: Таблица мистера Паскаля для комбинаций) и Абрахамом Муавром (1730).

Отличительные черты

Треугольник Паскаля и его свойства — тема довольно обширная. Главное, в нём содержится множество моделей чисел. Обзор следует начать с простого — ряды:

  • Сумма элементов одной строки в два раза больше суммы строки, предшествующей ей. Например, строка 0 (самая верхняя) имеет значение 1, строчка 1–2, а 2 имеет значение 4 и т. д. Это потому что каждый элемент в строке производит два элемента в следующем ряду: один слева и один справа. Сумма элементов строки n равна 2 n .
  • Принимая произведение элементов в каждой строке, последовательность продуктов можно связать с основанием натурального логарифма.
  • В треугольнике Паскаля через бесконечный ряд Нилаканты можно найти число Пи.
  • Значение строки, если каждая запись считается десятичным знаком (имеется в виду, что числа больше 9 переносятся соответственно), является степенью 11 (11 n для строки n). Таким образом, в строке 2 ⟨1, 2, 1⟩ становится 11 2 , равно как ⟨1, 5, 10, 10, 5, 1⟩ в строке пять становится (после переноса) 161, 051, что составляет 11 5 . Это свойство объясняется установкой x = 10 в биномиальном разложении (x + 1) n и корректировкой значений в десятичной системе.
  • Некоторые числа в треугольнике Паскаля соотносятся с числами в треугольнике Лозанича.
  • Сумма квадратов элементов строки n равна среднему элементу строки 2 n. Например, 1 2 + 4 2 + 6 2 + 4 2 + 1 2 = 70.
  • В любой строчке n, где n является чётным, средний член за вычетом члена в двух точках слева равен каталонскому числу (n / 2 + 1).
  • В строчке р, где р представляет собой простое число, все члены в этой строке, за исключением 1s, являются кратными р.
  • Чётность. Для измерения нечётных терминов в строке n необходимо преобразовать n в двоичную форму. Пусть x будет числом 1s в двоичном представлении. Тогда количество нечётных членов будет 2 х . Эти числа являются значениями в последовательности Гулда.
  • Каждая запись в строке 2 n -1, n ≥ 0, является нечётной.
  • Полярность. Когда элементы строки треугольника Паскаля складываются и вычитаются вместе последовательно, каждая строка со средним числом, означающим строки с нечётным числом целых чисел, даёт 0 в качестве результата.

Диагонали треугольника содержат фигурные числа симплексов. Например:

  • Идущие вдоль левого и правого краёв диагонали содержат только 1.
  • Рядом с рёбрами диагонали содержат натуральные числа по порядку.
  • Двигаясь внутрь, следующая пара содержит треугольные числа по порядку.
  • Следующая пара — тетраэдрические, а следующая пара — числа пятиугольника.

Существуют простые алгоритмы для вычисления всех элементов в строке или диагонали без вычисления других элементов или факториалов.

Общие свойства

Образец, полученный путём раскраски только нечётных чисел, очень похож на фрактал, называемый треугольником Серпинского. Это сходство становится всё более точным, так как рассматривается больше строк в пределе, когда число рядов приближается к бесконечности, получающийся в результате шаблон представляет собой фигуру, предполагающую фиксированный периметр. В целом числа могут быть окрашены по-разному в зависимости от того, являются ли они кратными 3, 4 и т. д.

В треугольной части сетки количество кратчайших путей от заданного до верхнего угла треугольника является соответствующей записью в паскалевском треугольнике. На треугольной игровой доске Плинко это распределение должно давать вероятности выигрыша различных призов. Если строки треугольника выровнены по левому краю, диагональные полосы суммируются с числами Фибоначчи.

Благодаря простому построению факториалами можно дать очень простое представление фигуры Паскаля в терминах экспоненциальной матрицы: треугольник — это экспонента матрицы, которая имеет последовательность 1, 2, 3, 4… на её субдиагонали, а все другие точки — 0.

Количество элементов симплексов фигуры можно использовать в качестве справочной таблицы для количества элементов (рёбра и углы) в многогранниках (треугольник, тетраэдр, квадрат и куб).

Шаблон, созданный элементарным клеточным автоматом с использованием правила 60, является в точности паскалевским треугольником с биномиальными коэффициентами, приведёнными по модулю 2. Правило 102 также создаёт этот шаблон, когда завершающие нули опущены. Правило 90 создаёт тот же шаблон, но с пустой ячейкой, разделяющей каждую запись в строках. Фигура может быть расширена до отрицательных номеров строк.

Секреты треугольника

Конечно, сейчас большинство расчётов для решения задач не в классе можно сделать с помощью онлайн-калькулятора. Как пользоваться треугольником Паскаля и для чего он нужен, обычно рассказывают в школьном курсе математики. Однако его применение может быть гораздо шире, чем принято думать.

Начать следует со скрытых последовательностей. Первые два столбца фигуры не слишком интересны — это только цифры и натуральные числа. Следующий столбец — треугольные числа. Можно думать о них, как о серии точек, необходимых для создания групп треугольников разных размеров.

Точно так же четвёртый столбец — это тетраэдрические числа или треугольные пирамидальные. Как следует из их названия, они представляют собой раскладку точек, необходимых для создания пирамид с треугольными основаниями.

Столбцы строят таким образом, чтобы описывать «симплексы», которые являются просто экстраполяциями идеи тетраэдра в произвольные измерения. Следующий столбец — это 5-симплексные числа, затем 6-симплексные числа и так далее.

Полномочия двойки

Если суммировать каждую строку, получатся степени основания 2 начиная с 2⁰ = 1. Если изобразить это в таблице, то получится следующее:

1
1 + 1 = 2
1 + 2 + 1 = 4
1 + 3 + 3 + 1 = 8
1 + 4 + 6 + 4 + 1 = 16
1 + 5 + 10 + 10 + 5 + 1 = 32
1 + 6 + 15 + 20 + 15 + 6 + 1 = 64

Суммирование строк показывает силы базы 2.

Силы одиннадцати

Треугольник также показывает силы основания 11. Всё, что нужно сделать, это сложить числа в каждом ряду вместе. Как показывает исследовательский опыт, этого достаточно только для первых пяти строк. Сложности начинаются, когда записи состоят из двузначных чисел. Например:

1 = 11°
11 = 11¹
121 = 11²
1331 = 11³

Оказывается, всё, что нужно сделать — перенести десятки на одно число слева.

Совершенные квадраты

Если утверждать, что 4² — это 6 + 10 = 16, то можно найти идеальные квадраты натуральных чисел в столбце 2, суммируя число справа с числом ниже. Например:

  • 2² → 1 + 3 = 4
  • 3² → 3 + 6
  • 4² → 6 + 10 = 16 и так далее.

Комбинаторные варианты

Чтобы раскрыть скрытую последовательность Фибоначчи, которая на первый взгляд может отсутствовать, нужно суммировать диагонали лево-выровненного паскалевского треугольника. Первые 7 чисел в последовательности Фибоначчи: 1, 1, 2, 3, 5, 8, 13… найдены. Используя исходную ориентацию, следует заштриховать все нечётные числа, и получится изображение, похожее на знаменитый фрактальный треугольник Серпинского.

Возможно, самое интересное соотношение, найденное в треугольнике — это то, как можно использовать его для поиска комбинаторных чисел, поскольку его первые шесть строк написаны с помощью комбинаторной записи. Поэтому, если нужно рассчитать 4, стоит выбрать 2, затем максимально внимательно посмотреть на пятую строку, третью запись (поскольку счёт с нуля), и будет найден ответ.

Действия с биномами

Например, есть бином (x + y), и стоит задача повысить его до степени, такой как 2 или 3. Обычно нужно пройти долгий процесс умножения (x + y)² = (x + y)(x + y) и т. д. Если воспользоваться треугольником, решение будет найдено гораздо быстрее. К примеру, нужно расширить (x + y)³. Поскольку следует повышать (x + y) до третьей степени, то необходимо использовать значения в четвёртом ряду фигуры Паскаля (в качестве коэффициентов расширения). Затем заполнить значения x и y. Получится следующее: 1 x³ + 3 x²y + 3 xy² + 1 y³. Степень каждого члена соответствует степени, до которой возводится (x + y).

В виде более удобной формулы этот процесс представлен в теореме бинома. Как известно, всё лучше разбирать на примерах. Итак — (2x – 3)³. Пусть x будет первым слагаемым, а y — вторым. Тогда x = 2x, y = –3, n = 3 и k — целые числа от 0 до n = 3, в этом случае k = <0, 1, 2, 3>. Следует внести эти значения в формулу. Затем заполнить значения для k, которое имеет 4 разные версии, их нужно сложить вместе. Лучше упростить условия с показателями от нуля до единицы.

Как известно, комбинаторные числа взяты из треугольника, поэтому можно просто найти четвёртую строку и подставить в значения 1, 3, 3, 1 соответственно, используя соответствующие цифры Паскаля 1, 3, 3, 1. Последнее — необходимо завершить умножение и упрощение, в итоге должно получиться: 8 x³ — 36 x² + 54x — 27. С помощью этой теоремы можно расширить любой бином до любой степени, не тратя время на умножение.

Биномиальное распределение описывает распределение вероятностей на основе экспериментов, которые можно разделить на группы с двумя возможными исходами. Самый классический пример этого — бросание монеты. Например, есть задача выбросить «решку» — успех с вероятностью p. Тогда выпадение «орла» является случаем «неудачи» и имеет вероятность дополнения 1 – p.

Если спроектировать этот эксперимент с тремя испытаниями, с условием, что нужно узнать вероятность выпадения «решки», можно использовать функцию вероятности массы (pmf) для биномиального распределения, где n — это количество испытаний, а k — это число успехов. Предполагаемая вероятность удачи — 0,5 (р = 0,5). Самое время обратиться к треугольнику, используя комбинаторные числа: 1, 3, 3, 1. Вероятность получить ноль или три «решки» составляет 12,5%, в то время как переворот монеты один или два раза на сторону «орла» — 37,5%. Вот так математика может применяться в жизни.


источники:

http://vasmirnov.ru/Lecture/FigChisla/FigChisla.htm

http://nauka.club/matematika/treugolnik-paskalya.html