Пирамида треугольник определить сечение

Пирамида треугольник определить сечение

Постройте сечение треугольной пирамиды, проходящее через точки M, N и P. Для случая, когда все рёбра пирамиды равны, определите вид треугольника, являющегося сечением.

Точки M и N лежат в одной плоскости, следовательно, через них можем провести прямую. След этой прямой — отрезок MN. Он видимый, тогда соединяем M и N сплошной линией. Аналогично строим след PN. Точки M и P лежат в одной плоскости, следовательно, через них можем провести прямую. След этой прямой — отрезок MP. Он невидимый, поэтому отрезок MP проводим штрихом.Треугольник MNP — искомое сечение:

Так как все ребра пирамиды равны, то треугольник, являющийся сечением — равносторонний остроугольный.

Что такое пирамида: определение, элементы, виды, варианты сечения

В данной публикации мы рассмотрим определение, основные элементы, виды и возможные варианты сечения пирамиды. Представленная информация сопровождается наглядными рисунками для лучшего восприятия.

Определение пирамиды

Пирамида – это геометрическая фигура в пространстве; многогранник, который состоит из основания и боковых граней (с общей вершиной), количество которых зависит от количества углов основания.

Примечание: пирамида – это частный случай конуса.

Элементы пирамиды

Для рисунка выше:

  • Основание (четырехугольник ABCD) – грань фигуры, являющая многогранником. Ей не принадлежит вершина.
  • Вершина пирамиды (точкаE) – общая точка всех боковых граней.

Развёртка пирамиды – фигура, полученная при “разрезе” пирамиды, т.е. при совмещении всех ее граней в плоскости одной из них. Для правильной четырехугольной пирамиды развертка в плоскости основания выглядит следующим образом.

Примечание: свойства пирамиды представлены в отдельной публикации.

Виды сечения пирамиды

1. Диагональное сечение – секущая плоскость проходит через вершину фигуры и диагональ основания. У четырехугольной пирамиды таких сечения два (по одному на каждую диагональ):

2. Если секущая плоскость параллельна основанию пирамиды, она делит ее на две фигуры: подобную пирамиду (считая от вершины) и усеченную пирамиду (считая от основания). Сечением является подобный основанию многоугольник.

На данном рисунке:

Примечание: Существуют и другие виды сечения, но они не так распространены.

Задание 3. Многогранники

4.1. Краткие теоретические сведения

Многогранниками называются тела, ограниченные плоскими n-угольниками, которые называются гранями . Линии пересечения граней называются ребрами , точки пересечения ребер – вершинами. Для всех многогранников справедлива формула Эйлера: сумма граней и вершин за минусом числа ребер есть величина постоянная: Г + В – Р = 2.

Наиболее распространенными в технике многогранниками являются правильные и неправильные, прямые и наклонные призмы и пирамиды. Призмой называется многогранник, в основании которого находится плоский n-угольник, а остальные грани являются в общем случае параллелограммами. Пирамидой называется многогранник, в основании которого находится плоский n-угольник, а боковыми гранями являются треугольники с общей вершиной. На эпюре многогранники задаются проекциями ребер, так называемой сеткой ребер .

Типовой задачей для многогранников является задача о пересечении многогранников плоскостями частного и общего положения. Для построения фигуры сечения многогранника плоскостью используют следующие приемы:

    • определение каждой вершины сечения, как точки пересечения ребер многогранника с секущей плоскостью ( способ ребер );
  • построение стороны сечения, как линии пересечения с секущей плоскостью граней многогранника ( способ граней ).

Чаще применяется первый из заданных приемов, второй же целесообразно применять в тех случаях, когда грани многогранника являются проецирующими плоскостями, линии пересечения которых с секущей плоскостью общего положения строятся очень просто.


а б
Рисунок 4.1 – Пересечение пирамиды плоскостью (а — задание, б — результат)

В методе ребер несколько раз (по числу пересекаемых ребер) решается задача о пересечении прямой (ребра) с плоскостью (секущей плоскостью). В этом случае находятся точки 1, 2, 3 (рис. 4.1). Найденные точки являются вершинами сечения пирамиды плоскостью.

В методе граней несколько раз решается типовая задача о пересечении двух плоскостей (граней многогранника и секущей плоскости), в которой находят линии 1-2, 2-3, 3-1, являющиеся сторонами многоугольника (в данном примере, треугольника сечения). Если секущая плоскость является плоскостью частного положения, то задача решается упрощенно.

4.2. Способ перемены плоскостей проекций

Сущность способа перемены плоскостей проекций заключается в том, что положение геометрических элементов (точек, прямых, фигур, тел) в пространстве остается неизменным, а система плоскостей проекций заменяется новой, по отношению к которой эти элементы занимают положение, наиболее удобное для решения той или иной задачи.

В ряде случаев для решения задачи бывает достаточно заменить новой плоскостью одну из основных плоскостей проекций – фронтальную или горизонтальную. В других же случаях замена лишь одной плоскости проекций вопроса не разрешает и бывает необходимо последовательно заменить новыми плоскостями обе основные плоскости проекций.

При замене основной плоскости проекций новой плоскостью эта последняя должна располагаться по отношению к остающейся основной плоскости проекций перпендикулярно.

Рассмотрим способ перемены плоскостей проекций на примерах.

Для того чтобы данная прямая общего положения m=АВ оказалась линией уровня, следует ввести новую плоскость проекций π4, которая была бы ей параллельна (рис. 4.2 и 4.3).


Рисунок 4.2 Рисунок 4.3

На Рисунке 4.2 введена плоскость π4, параллельная прямой m и перпендикулярная к плоскости π1; по новым линиям связи от оси π14 откладываем расстояния от точек А и В до плоскости π1 (отмеченное штрихом и D1). В новой системе плоскостей проекций π14 прямая m является линией уровня.

На Рисунке 4.3 плоскость π4 параллельна прямой m=АВ и перпендикулярна к плоскости π2. Прямая m в системе π24 является линией уровня.

Для того чтобы прямая линия была проецирующей прямой вводится плоскость проекций, перпендикулярная к ней. Для прямой общего положения требуется провести две замены плоскостей проекций. На Рисунке 4.4 прямая m=АВ спроецирована на параллельную ей плоскость π4. Затем вводится плоскость проекций π5, перпендикулярная m4. В системе плоскостей проекций π54 прямая m проецируется в точку.

Рисунок 4.4 – Проецирование отрезка прямой в точку

Чтобы определить натуральную величину плоской фигуры общего положения (Рисунок 4.5), требуется сначала ввести такую плоскость проекций π4, чтобы образовалась система, в которой плоскость α, заданная треугольником АВС будет проецирующей. Данную подзадачу можно решить, введя дополнительную плоскость проекций π4 перпендикулярно либо горизонтальной проекции горизонтали, либо фронтальной проекции фронтали. Затем вводится дополнительная плоскость π5, перпендикулярная к плоскости π4 и параллельная плоскости α .


Рисунок 4.5 – Определение натуральной величины треугольника

4.3. Развертывание поверхностей

Разверткой называется плоская фигура, получаемая путем совмещения с плоскостью чертежа поверхности тела.

Построение разверток имеет большое значение в таких областях техники, как котлостроение, судостроение, кровельное и жестяночное дело, продукция которых изготовляется из листового материала.

Точные развертки могут быть построены лишь для линейчатых поверхностей, смежные положения образующих которых параллельны (цилиндрическая поверхность) или пересекаются (коническая поверхность).

Для нелинейчатых поверхностей, образующей которых является кривая линия (например, сферическая поверхность), можно построить развертки лишь приближенные. С этой целью такие поверхности разбиваются на небольшие элементы, и каждая такая часть кривой поверхности заменяется плоскостью. Это означает, что данная кривая поверхность заменяется вписанным в нее многогранником, развертка которого приближенно принимается за развертку кривой поверхности.

Развертка боковой поверхности пирамиды (Рисунок 4.7) состоит из трех треугольников, представляющих в истинном виде боковые грани пирамиды.

Для построения развертки необходимо предварительно определить истинные длины боковых ребер пирамиды. Повернув эти ребра вокруг высоты пирамиды до положения параллельного плоскости ?2, на фронтальной плоскости проекций получим их истинные длины в виде отрезков S2 A 2, S2 B 2, S2 C 2 (Рисунок 4.6).

Построив по трем сторонам S2 A 2, S2 B 2 и A1B1 грань пирамиды ASB (Рисунок 4.7), пристраиваем к ней смежную грань – треугольник BSC, а к последнему – грань CSA. Полученная фигура представит собою развертку боковой поверхности данной пирамиды.

Для получения полной развертки к одной из сторон основания пристраиваем основание пирамиды – треугольник АВС.

Для построения на развертке линии, по которой поверхность пирамиды пересечется плоскостью α (Рисунок 4.7), следует нанести на ребра SA, SB и SC, соответственно, точки 1, 2 и 3, в которых эта плоскость пересекает ребра, определив истинные длины отрезков S1, S2 и S3.


Рисунок 4.6 – Определение истинных длин ребер

Рисунок 4.7 – Построение развертки

4.4. Задание 3. Построение натурального вида сечения пирамиды плоскостью

4.4.1. Условие задания

Задание следует выполнять в соответствии с алгоритмом:

    1. По координатам вершин (Таблицы 3.1- 3.3) построить: две проекции пирамиды 1234S;
    1. Выполнить две проекции сечения пирамиды плоскостью общего положения АВС (Таблица 3.4);
    1. Найти натуральный вид сечения способом перемены плоскостей проекций;
  1. Выполнить развертку верхней отсеченной части пирамиды.

4.4.2. Рекомендации по выполнению задания № 2

Порядок выполнения задачи следующий:

  1. Построить горизонтальные и фронтальные проекции пирамиды и 1234S и плоскости ∆АBC (Рисунок 4.8);
  2. Способом ребер или способом граней построить проекции сечения пирамиды 1234S плоскостью ∆АBC.

Способ ребер заключается в том, что ребро пирамиды (например, 1S) заключается во фронтально-проецирующую плоскость γ: γπ212S2. Затем выполняется построение точки 8 пересечения ребра 1S с плоскостью γ:

Аналогично выполняется построение остальных точек искомого сечения.

Способом граней строятся линии пересечения с помощью плоскостей-посредников;

Рисунок 4.8 – Построение сечения

  1. Способом перемены плоскостей проекций найти натуральный вид сечения 56789.

Сущность способа перемены плоскостей проекций состоит в том, что положение геометрического образа (прямой, плоскости, поверхности) в пространстве остается неизменным, а система плоскостей проекций π12 дополняется плоскостями, образующими с π1 или π2, либо между собой системы двух взаимно перпендикулярных плоскостей проекций. Расположение новой плоскости проекций по отношению к геометрическим образам выбирается в зависимости от условия задачи.

В данной задаче необходимо дважды ввести новые плоскости проекций: в системе плоскостей π14 сечение 56789 станет проецирующей плоскостью, а в системе плоскостей проекций π45 – плоскостью уровня;


Рисунок 4.9 – Пересечение пирамиды плоскостью общего положения

  1. Выполнить развертку нижней отсеченной части пирамиды.

Видеопример выполнения задания №3

4.5. Варианты задания 3

Таблица 3.1– Значения координат точек (для вариантов с 1 по 10)
S 1 2 3 4
X 50 90 30 10 70
Y 50 50 5 70 80
Z 90 10 10 10 10
Таблица 3.2– Значения координат точек (для вариантов с 11 по 20)
S 1 2 3 4
X 50 90 30 10 70
Y 50 50 5 70 80
Z 90 0 0 0 0
Таблица 3.3– Значения координат точек (для вариантов с 21 по 30)
S 1 2 3 4
X 50 100 25 5 80
Y 50 50 5 70 80
Z 100 10 10 10 10
Таблица 3.4– Значения координат точек
Вариант Координаты (x, y, z) точек Вариант Координаты (x, y, z) точек
А В С А В С
1 100;15;30 35; 85; 90 10; 45; 30 16 90; 0; 0 100; 50; 70 5; 55; 40
2 65; 10; 0 100; 50; 80 20; 80; 80 17 95; 35; 40 50; 35; 0 5; 65; 50
3 100; 25;40 15; 90; 90 50; 15; 0 18 50; 50; 45 0; 55; 0 100; 20; 5
4 30; 80; 90 20; 25; 0 100; 25; 40 19 30; 90; 60 90; 30; 20 0; 35; 0
5 100; 15; 20 100; 60; 90 10; 45; 20 20 95; 15; 0 5; 60; 20 70; 85; 80
6 90; 0; 0 100; 50; 80 5; 55; 40 21 100;15;30 35; 85; 90 10; 45; 30
7 95; 35; 50 50; 35; 0 5; 65; 50 22 65; 10; 0 100; 50; 80 20; 80; 80
8 50; 50; 55 0; 55; 5 100; 20; 5 23 100; 25;40 15; 90; 90 50; 15; 0
9 30; 90; 70 90; 30; 30 0; 35; 0 24 30; 80; 90 20; 25; 0 100; 25; 40
10 95; 15; 10 5; 60; 30 70; 85; 80 25 100; 15; 20 100; 60; 90 10; 45; 20
11 100;15;20 35; 85; 80 10; 45; 30 26 90; 0; 0 100; 50; 80 5; 55; 40
12 65; 10; 0 100; 50; 70 20; 80; 80 27 95; 35; 50 50; 35; 0 5; 65; 50
13 100; 25;30 15; 90; 80 50; 15; 0 28 50; 50; 55 0; 55; 5 100; 20; 5
14 30; 80; 80 20; 25; 0 100; 25; 40 29 30; 90; 70 90; 30; 30 0; 35; 0
15 100; 15; 10 100; 60; 80 10; 45; 20 30 95; 15; 10 5; 60; 30 70; 85; 80


Рисунок 4.10 – Пример оформления задания 3


источники:

http://microexcel.ru/piramida/

http://cadinstructor.org/ng/checks/primer-zadaniya-3/