Пифагор треугольники пифагора f

Теорема Пифагора

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Теорема Пифагора, определение: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Гипотенуза — сторона, лежащая напротив прямого угла.

Катет — одна из двух сторон, образующих прямой угол.

Формула Теоремы Пифагора выглядит так:

где a, b — катеты, с — гипотенуза.

Из этой формулы можно вывести следующее:

  • a = √c 2 − b 2
  • b = √c 2 − a 2
  • c = √a 2 + b 2

Для треугольника со сторонами a, b и c, где c — большая сторона, действуют следующие правила:

  • если c 2 2 + b 2 , значит угол, противолежащий стороне c, является острым.
  • если c 2 = a 2 + b 2 , значит угол, противолежащий стороне c, является прямым.
  • если c 2 > a 2 +b 2 , значит угол, противолежащий стороне c, является тупым.
Записывайтесь на курсы обучения математике для школьников с 1 по 11 классы!

Теорема Пифагора: доказательство

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Дано: ∆ABC, в котором ∠C = 90º.

Доказать: a 2 + b 2 = c 2 .

Пошаговое доказательство:

  • Проведём высоту из вершины C на гипотенузу AB, основание обозначим буквой H.
  • Прямоугольная фигура ∆ACH подобна ∆ABC по двум углам:
  • Также прямоугольная фигура ∆CBH подобна ∆ABC:
  • Введем новые обозначения: BC = a, AC = b, AB = c.
  • Из подобия треугольников получим: a : c = HB : a, b : c = AH : b.
  • Значит a 2 = c * HB, b 2 = c * AH.
  • Сложим полученные равенства:

a 2 + b 2 = c * HB + c * AH

a 2 + b 2 = c * (HB + AH)

a 2 + b 2 = c * AB

Обратная теорема Пифагора: доказательство

Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такой треугольник является прямоугольным.

Дано: ∆ABC

Доказать: ∠C = 90º

Пошаговое доказательство:

  • Построим прямой угол с вершиной в точке C₁.
  • Отложим на его сторонах отрезки C₁A₁ = CA и C₁B₁ = CB.
  • Проведём отрезок A₁B₁.
  • Получилась фигура ∆A₁B₁C₁, в которой ∠C₁=90º.
  • В этой фигуре ∆A₁B₁C₁ применим теорему Пифагора: A₁B₁ 2 = A₁C₁ 2 + B₁C₁ 2 .
  • Таким образом получится:
  • Значит, в фигурах треугольниках ∆ABC и ∆A₁B₁C₁:
  1. C₁A₁ = CA и C₁B₁ = CB по результату построения,
  2. A₁B₁ = AB по доказанному результату.
  • Поэтому, ∆A₁B₁C₁ = ∆ABC по трем сторонам.
  • Из равенства фигур следует равенство их углов: ∠C =∠C₁ = 90º.

Обратная теорема доказана.

Решение задач

Задание 1. Дан прямоугольный треугольник ABC. Его катеты равны 6 см и 8 см. Какое значение у гипотенузы?

Как решаем:

Пусть катеты a = 6 и b = 8.

По теореме Пифагора c 2 = a 2 + b 2 .

Подставим значения a и b в формулу:
c 2 = 6 2 + 8 2 = 36 + 64 = 100
c = √100 = 10.

Задание 2. Является ли треугольник со сторонами 8 см, 9 см и 11 см прямоугольным?

  • Выберем наибольшую сторону и проверим, выполняется ли теорема Пифагора:

Ответ: треугольник не является прямоугольным.

Малоизвестное обобщение теоремы Пифагора

Вокруг да около

История теоремы Пифагора уходит в века и тысячелетия. В этой статье, мы не будем подробно останавливаться на исторических темах. Для интриги, скажем только, что, по-видимому, эту теорему знали еще древне-египетские жрецы, жившие более 2000 лет до нашей эры. Для тех, кому любопытно, вот ссылка на статью в Википедии.

Прежде всего, хочется для полноты изложения привести здесь доказательство теоремы Пифагора, которое, по моему мнению, наиболее элегантно и очевидно. На рисунке выше изображено два одинаковых квадрата: левый и правый. Из рисунка видно, что слева и справа площади закрашенных фигур равны, так как в каждом из больших квадратов закрашено по 4 одинаковых прямоугольных треугольника. А это означает, что и незакрашенные (белые) площади слева и справа тоже равны. Замечаем, что в первом случае площадь незакрашенной фигуры равна , а во втором — площадь незакрашенной области равна . Таким образом, . Теорема доказана!

Зарождение идеи

В этой статье я хочу не только рассказать что-то новое и познавательное о теореме Пифагора, но и поделиться своей историей о том, как в моей голове зародилась интересная идея, которую я сумел сформулировать, доказать и даже предположил возможность обобщения на более высокую размерность. Но обо всем по порядку.

Египетские треугольники

Во-первых, это красивые математические объекты. А во-вторых, с ними очень удобно решать задачи! Нет никаких квадратных корней и иррациональных чисел в ответе.

Загадочные четверки

Заметив такое удивительное совпадение, я стал думать. Вопрос, который меня занимал в связи с этим загадочным обстоятельством, наличием не только троек, но и четверок, обнаруживающих свойства египетского треугольника, был таков: «А что бы это все могло значить?» Я перебирал варианты, какие только приходили в голову. В фантазии себя никак не ограничивал. Много раз садился за стол, выписывал известные мне наборы четверок и вдумчиво на них смотрел… часами… без перерыва… и… ничего не происходило. У меня был школьный товарищ Саня, с которым я как-то поделился своими идеями. Но его больше интересовали гуманитарные науки. Он стал юристом и сейчас служит в звании майора милиции. Саня сказал мне примерно следующее:«Вот странный ты человек. Делать тебе больше нечего. Мало тебе задают домашек? Хватит думать о всякой ерунде!». А, надо сказать, думал я, не переставая, и думал много лет, время от времени возвращаясь к этой загадке. Еще будучи школьником, я сделал вывод, что это, вероятнее всего, имеет отношение к великой теореме Ферма (на которую я тоже много раз подолгу смотрел). Шли годы. Ничего не получалось. Озарение не приходило. И я понял, что, вероятно, дальше чем «что-то связанное с теоремой Ферма» я никуда уже не продвинусь. Но не тут то было

Шерлок нашел зацепку

Итак, в 2014 году ехал я в автобусе по Новосибирску. А может быть это было метро. Дорога не близкая. Заняться нечем. И в очередной раз решил я подумать о моей школьной загадке. И вот что я подумал.

Как же назвать эти числа? Треугольниками не назовешь, ведь четыре числа никак не могут образовать треугольник. И тут! Как гром среди ясного неба

Раз есть такие четверки чисел, значит должен быть геометрический объект с такими же свойствами, отраженными в этих числах!

Теперь осталось только подобрать какой-то геометрический объект под это свойство, и все встанет на свои места! Конечно, предположение было чисто гипотетическое, и никакого подтверждения под собой не имело. Но что если это так!

Начался перебор объектов. Звезды, многоугольники, правильные, неправильные, с прямым углом и так далее и тому подобное. Опять ничего не подходит. Что делать? И в этот момент Шерлок получает свою вторую зацепку.

Надо повысить размерность! Раз тройке соответствуют треугольник на плоскости, значит четверке соответствует нечто трехмерное!

О нет! Опять перебор вариантов! А в трехмерии гораздо, гораздо больше всевозможных геометрических тел. Попробуй перебрать их все! Но не все так плохо. Есть же еще прямой угол и другие зацепки! Что мы имеем? Египетские четверки чисел (пусть будут египетские, надо же их как-то называть), прямой угол (или углы) и некий трехмерный объект. Дедукция сработала! И… Полагаю, что догадливые читатели уже поняли, что речь идет о пирамидах, у которых при одной из вершин все три угла — прямые. Можно даже назвать их прямоугольными пирамидами по аналогии с прямоугольным треугольником.

Новая теорема

Итак, у нас есть все что нужно. Прямоугольные (!) пирамиды, боковые грани-катеты и секущая грань-гипотенуза. Пришло время нарисовать еще одну картинку.

Теорема Пифагора для прямоугольной пирамиды

На картинке изображена пирамида с вершиной в начале прямоугольных координат (пирамида как бы лежит на боку). Пирамида образована тремя взаимно-перпендикулярными векторами, отложенными из начала координат вдоль координатных осей. То есть каждая боковая грань пирамиды — это прямоугольный треугольник с прямым углом при начале координат. Концы векторов определяют секущую плоскость и образуют грань-основание пирамиды.

Теорема

Пусть есть прямоугольная пирамида, образованная тремя взаимно-перпендикулярными векторами , у которой площади граней-катетов равны — , и площадь грани-гипотенузы — . Тогда

Альтернативная формулировка: У четырехгранной пирамиды, у которой при одной из вершин все плоские углы прямые, сумма квадратов площадей боковых граней равна квадрату площади основания.

Разумеется, если обычная теорема Пифагора формулируется для длин сторон треугольников, то наша теорема формулируется для площадей сторон пирамиды. Доказать эту теорему в трех измерениях очень просто, если вы немного знаете векторную алгебру.

Доказательство

где .

Площадь представим как половину площади параллелограмма, построенного на векторах и

Как известно, векторное произведение двух векторов — это вектор, длина которого численно равна площади параллелограмма, построенного на этих векторах.
Поэтому

Что и требовалось доказать!

ЭВРИКА!

Моему восторгу не было границ! Я буквально прыгал от счастья. Конечно, это не бог весть какая сложная теорема, и доказательство очень простое, но ведь сам. И до меня — никто! Я был в этом искренне убежден в течение около года. Попытки найти хоть какие-то свидетельства о том, что это уже известно и доказано терпели неудачу одна за другой, и я думал, что совершил открытие. Это непредаваемое чувство! Я хотел поделиться этой теоремой со всем миром. Говорил о ней друзьям, знакомым математикам, просто знакомым с техническим/математическим образованием и без. Никто не разделял моего восторга и энтузиазма. Всем было попросту безразлично. Будто бы я не придумал и доказал теорему, а просто в магазин за хлебом сходил. Ну и что тут такого? Вот уж действительно… Как говорится, «Как скучно мы живём! В нас пропал дух авантюризма, мы перестали лазить в окна к любимым женщинам, мы перестали делать большие хорошие глупости.» (из фильма «Ирония судьбы»).

Конечно, как у человека, профессионально занимающегося исследованиями, подобное в моей жизни уже случалось, и не раз. Но этот момент был самым ярким и самым запоминающимся. Я испытал полную гамму чувств, эмоций, переживаний первооткрывателя. От зарождения мысли, кристализации идеи, нахождения доказательства — до полного непонимания и даже неприятия, которое встретили мои идеи у моих друзей, знакомых и, как мне тогда казалось, у целого мира. Это было уникально! Я словно почувствовал себя в шкуре Галлилея, Коперника, Ньютона, Шредингера, Бора, Эйнштейна и многих многих других открывателей.

Послесловие

В жизни, все оказалось гораздо проще и прозаичнее. Я опоздал… Но на сколько! Всего-то навсего 18 лет! Под страшными продолжительными пытками и не с первого раза Гугл признался мне, что эта теорема была опубликована в 1996 году!

Вот ссылка на статью:

Статья опубликована издательством Техасского технического университета. Авторы, профессиональные математики, ввели терминологию (которая, кстати, во многом совпала с моей) и доказали также и обобщенную теорему справедливую для пространства любой размерности большей единицы. Что же произойдет в размерностях более высоких, чем 3? Все очень просто: вместо граней и площадей будут гиперповерхности и многомерные объемы. А утверждение, конечно, останется все тем же: сумма квадратов объемов боковых граней равна квадрату объема основания, — просто количество граней будет больше, а объем каждой из них станет равен половине произведения векторов-образующих. Вообразить это почти невозможно! Можно только, как говорят философы, помыслить!

Что удивительно, узнав о том, что такая теорема уже известна, я ничуть не расстроился. Где-то в глубине души я подозревал, что вполне возможно, я был не первый, и понимал, что нужно быть всегда к этому готовым. Но тот эмоциониальный опыт, который я получил, зажег во мне искру исследователя, которая, я уверен, теперь уже не угаснет никогда!

Эрудированный читатель в комментариях прислал ссылку
Теорема де Гуа

Выдержка из Википедии

В 1783 году теорема была представлена Парижской академии наук французским математиком Ж.-П. де Гуа, однако ранее она была известна Рене Декарту[3] и до него Иоганну Фульгаберу (англ.), который, вероятно, первым открыл её в 1622 году[4]. В более общем виде теорему сформулировал Шарль Тинсо (фр.) в докладе Парижской академии наук в 1774 году[4]

Так что я опоздал не на 18 лет, а как минимум на пару веков!

Источники

Читатели указали в комментариях несколько полезных ссылок. Вот эти и некоторые другие ссылки:

Пифагор треугольники пифагора f

В статье излагается оригинальный подход к построению «пифагоровых треугольников», основанный на числах Фибоначчи и Люка.

Настоящей статьей автор открывает серию статей в рамках рубрики «Золотое Сечение для «чайников»», на которой будут выставляться популярные статьи о Золотом Сечении, числах Фибоначчи, числах Люка и их многочисленных приложениях. Статьи рассчитаны на широкий круг читателей и не требуют специальной математической подготовки.

Как известно, «Теорема Пифагора» является едва ли не самой знаменитой теоремой геометрии, которую помнит каждый человек, который когда-либо учился в средней школе и, возможно, сумел «начисто забыть» всю математику. Суть этой теоремы чрезвычайно проста. Теорема утверждает, что в прямоугольном треугольнике катеты a и b связаны с гипотенузой с следующим простым соотношением:

a 2 + b 2 = c 2 (1)

Несмотря на ее предельную простоту, теорема Пифагора, по мнению многих математиков относится к разряду наиболее выдающихся математических теорем за всю историю математики. Гениальный астроном Иоганн Кеплер выразил свое восхищение теоремой Пифагора в следующих словах:

«В геометрии существует два сокровища – теорема Пифагора и деление отрезка в крайнем и среднем отношении. Первое можно сравнить с ценностью золота, второе можно назвать драгоценным камнем».

То есть, из всего необозримого множества геометрических результатов и теорем Кеплер выделил только два результата, которые он причислил к разряду «сокровищ геометрии»: теорему Пифагора и «задачу о делении отрезка в крайнем и среднем отношении» (так в старину называлась знаменитая «задача о золотом сечении»).

Среди бесконечного количества возможных прямоугольных треугольников, удовлетворяющих соотношению (1), особый интерес всегда вызывали так называемые «пифагоровы треугольники», стороны которых являются целыми числами. Несомненно, «пифагоровы треугольники» также относятся к разряду «сокровищ геометрии», а поиски таких треугольников представляют одну из из интереснейших страниц в истории математики. Наиболее широко известным из них является прямоугольный треугольник со сторонами 4, 3 и 5. Он назывался также «священным» или «египетским», так как он широко использовался в египетской культуре (Рис. 1).

Рисунок 1. «Священный» или «египетский» треугольник

Для «египетского» треугольника на Рис. 1 теорема Пифагора (1) принимает следующий числовой вид:

4 2 + 3 2 = 5 2 . (2)

Существует легенда, что именно соотношение (2) использовалось египетскими землемерами и строителями для определения прямого угла на плоскости. Для этого использовалась веревка длиной, например, 12 м, которая специальными петлями или узлами была разделена на три части в 3, 4 и 5 м. Для определения прямого угла египетский землемер натягивал одну из частей веревки, например, длиной 3 м, и фиксировал ее на земле с помощью специальных «колышек», забиваемых в две петли. Затем веревка натягивалась с помощью третьей петли и эта петля фиксировалась с помощью «колышка». Ясно, что угол, образуемый между двумя меньшими сторонами образованного таким образом треугольника, в точности равнялся 90 ° . Считалось, что при закладке пирамид такую ритуальную процедуру по определению прямых углов основания пирамиды на земле выполнял сам фараон.

В 13 в. знаменитый итальянский математик Леонардо Пизано (более известный по своему прозвищу Фибоначчи) ввел в математику любопытную числовую последовательность, известную в современной науке под названием «числа Фибоначчи». Под числами Фибоначчи понимается числовой ряд

1, 1, 2, 3, 5, 8, 13, 21, 34, 55. (3)

в котором каждый член ряда, начиная с третьего, равен сумме двух предыдущих.

Рекуррентная формула, задающая числа Фибоначчи, имеет вид:

F(n)= F(n-1)+ F(n-2) при n і 3 (4)
F(1) = F(2) = 1 (5)

На сайте [1] описан следующий способ нахождения «пифагоровых треугольников» с использованием чисел Фибоначчи (3). Для этого используются 4 любых подряд идущих числа Фибоначчи из последовательности (3):

F(n), F(n+1), F(n+2), F(n+3) (6)

Продемонстрируем идею метода на примере следующей четверки чисел Фибоначчи

1, 2, 3, 5, (7)

выбранной из ряда (3), начиная из числа Фибоначчи F(2) = 1.

Рассмотрим следующую процедуру [1], которая приведет нас к бесконечному числу «пифагоровых треугольников»:

1. Умножить 2 средних или внутренних числа из (7): 2 ґ 3 = 6. Для общего случая (6) мы должны вычислить произведение: F(n+1) ґ F(n+2).

2. Удвоить результат: 2 ґ 6 = 12. Для общего случая (6) мы должны получить число a = 2 ґ F(n+1) ґ F(n+2). Полученное число а равно первой стороне (катету) искомого «пифагорова треугольника».

3. Умножим теперь два внешних числа Фибоначчи из (7): 1 ґ 5 = 5. Для общего случая (6) мы должны вычислить произведение: b=F(n) ґ F(n+3). Число b представляет собой вторую сторону (катет) «пифагорова треугольника».

4. Третья, самая длинная сторона (гипотенуза) находится путем суммирования квадратов внутренних чисел из (7): 2 2 =4 и 3 2 =9, то есть их сумма равна: 4+9=13. Для общего случая (6) мы имеем: c=F 2 (n+1) + F 2 (n+2).

Нетрудно убедиться, что стороны a, b и с прямоугольного треугольника действительно образуют «пифагоров треугольник», поскольку:

12 2 + 5 2 = 13 2 .

Для общего случая (6) стороны «пифагорова треугольника» связаны соотношением:

[2 ґ F(n+1) ґ F(n+2)] 2 + [F(n) ґ F(n+3)] 2 = [F 2 (n+1) + F 2 (n+2)] 2 . (8)

Путем непосредственных вычислений легко проверить, что это тождество справедливо для всех начальных «четверок» чисел Фибоначчи типа (6). Действительно, для n=1 «четверка» чисел Фибоначчи имеет вид:

1, 1, 2, 3. (9)

В соответствии с приведенным выше алгоритмом мы можем вычислить стороны «пифагорова треугольника» для этого случая:

а = 2 ґ 1 ґ 2 = 4; b = 1 ґ 3 = 3; c = 1 2 + 2 2 = 1 + 4 = 5.

Таким образом, случай (9) порождает «священный» или «египетский» треугольник, для которого теорема Пифагора имеет вид (2).

Рассмотрим «пифагоров треугольник» для случая n=3. Для этого случая «четверка» чисел Фибоначчи выглядит следующим образом:

2, 3, 5, 8. (10)

Тогда в соответствии с приведенным выше алгоритмом стороны «пифагорова треугольника» могут быть найдены следующим образом:

а = 2 ґ 3 ґ 5 = 30; b = 2 ґ 8 = 16; c = 3 2 + 5 2 = 9 + 25 = 34.

Теорема Пифагора для этого случая выглядит так:

30 2 + 16 2 = 34 2 .

Наконец, для случая n=4 «четверка» чисел Фибоначчи имеет вид:

3, 5, 8, 13, (11)

а стороны «пифагорова треугольника» соответственно равны:

a = 2 ґ 5 ґ 8 = 80; b = 3 ґ 13 = 39; c = 5 2 + 8 2 = 35 + 64 = 89.

Теорема Пифагора для этого случая выглядит так:

80 2 + 39 2 = 89 2 .

В работе [1] приведена таблица фибоначчиевых «пифагоровых треугольников» для начальных значений n.

Таблица фибоначчиевых «пифагоровых треугольников»


источники:

http://habr.com/ru/post/371169/

http://www.trinitas.ru/rus/doc/0232/003a/02320003.htm