Пифагор и треугольник презентация

Пифагор и его египетский треугольник
презентация к уроку (геометрия, 8 класс) на тему

Презентация по геометрии на тему «Теорема Пифагора» для обучающихся 8 класса

Скачать:

Вложение Размер
Презентация по геометрии 1.17 МБ

Предварительный просмотр:

Подписи к слайдам:

Презентация на тему: «Пифагор и его египетский треугольник» Выполнила: учитель первой категории Ветчинова Елена Евгеньевна МОБУ « Паникинская СОШ»

Пифагор (др.-греч. Πυθαγόρας ὁ Σάμιος, лат. Pythagoras ; 570—490 гг. до н. э.) — древнегреческий философ, математик и мистик, создатель религиозно-философской школы пифагорейцев.

В современном мире Пифагор считается великим математиком и космологом древности, однако ранние свидетельства до III в. до н. э. не упоминают о таких его заслугах. Как пишет Ямвлих про пифагорейцев: « У них также был замечательный обычай приписывать всё Пифагору и нисколько не присваивать себе славы первооткрывателей, кроме, может быть, нескольких случаев. »

Египетский треугольник — прямоугольный треугольник с соотношением сторон 3:4:5.

Особенностью такого треугольника, известной ещё со времён античности, является то, что все три стороны его целочисленны, а по теореме Пифагора он прямоуголен. Египетский треугольник является простейшим (и первым известным) из Героновых треугольников — треугольников с целочисленными сторонами и площадями.

Название треугольнику с таким отношением сторон дали эллины: в VII—V веках до н. э. греческие философы и общественные деятели активно посещали Египет. Так, например, Пифагор в 535 до н. э. по настоянию Фалеса для изучения астрономии и математики отправился в Египет — и, судя по всему, именно попытка обобщения отношения квадратов, характерного для египетского треугольника, на любые прямоугольные треугольники и привела Пифагора к доказательству знаменитой теоремы

Общепринято мнение, что египетский треугольник с соотношением сторон 3:4:5 активно применялся для построения прямых углов египетскими землемерами и архитекторами, например, при построении пирамид.

Для построения прямого угла использовался шнур или верёвка, разделённая отметками (узлами) на 12 (3+4+5) частей: треугольник, построенный натяжением такого шнура, с весьма высокой точностью оказывался прямоугольным и сами шнуры-катеты являлись направляющими для кладки прямого угла сооружения.

В архитектуре средних веков египетский треугольник применялся для построения схем пропорциональности.

Презентация на тему: Теорема Пифагора для треугольника

«Теорема Пифагора для треугольника» ЦЕЛЬ УРОКА: ОБРАЗОВАТЕЛЬНЫЕ ЦЕЛИ: вести теорему Пифагора, показать ее применение к решению задач (формировать умения применять на следующих уроках) РАЗВИВАЮЩИЕ И ВОСПИТАТЕЛЬНЫЕ ЦЕЛИ: развитие самостоятельной и познавательной деятельности учащихся развитие активности и интереса к математике умение применять информационные технологии в доказательстве теоремы

Легенды и факты о Пифагоре Авторы: Власенко Даниил Белохвостова Татьяна Слизкова Полина Матвеева Полина Муравьева Алена

Теорема Пифагора Легенды и факты о Пифагоре. Авторы презентации : Власенко Д., Белохвостова Т., Слизкова П., Матвеева П., Муравьева А. Пифагорейская школа Авторы презентации : Чупрунов А., Рыжковская Д., Растворова А., Быстрицкая У. Доказательство теоремы Пифагора (учебник «Геометрия 7-9 классы», Л.С.Атанасян) Авторы презентации : Гаврилова А, Емеличева В., Романова И. Применение теоремы Пифагора к решению задач Авторы презентации : Пестиков И., Ромашов С., Топоркова Е. Доказательство теоремы Пифагора Евклидом (Автор презентации : Буджиашвили Л. Другие доказательства теоремы Пифагора Авторы презентации : Устенко Д., Маслова М., Городецкая Е., Крайнова А.) г.Ярославль, СОШ № 4

Юность Пифагора По преданию, Пифагор, сын Мнесарха, родился около 580 г. до н. э. на острове Самос. Первые познания он получил от своего отца, ювелира: в те времена эта профессия требовала многосторонней образованности. Для тогдашней греческой молодежи посещение чужих стран было главным способом расширить запас знаний, поэтому юность свою Пифагор провел в путешествиях. С его именем связано много легенд. Известно, что Пифагор посещал Египет и Вавилон.

Судьба Пифагора Отец мечтал, что сын будет продолжать его дело- ремесло золотых дел мастера. Но жизнь рассудила иначе. Будущий великий математик и философ в детстве обнаружил большие способности к наукам. У своего первого учителя Пифагор получает знания основ музыки и живописи. Учитель прививал юному Пифагору любовь к природе и ее тайнам.

Обучение Спустя несколько лет, по совету своего учителя Пифагор решает учиться в Египте, у жрецов. Попасть в Египет в то время было трудно, потому что страну фактически закрыли для греков. Но пока до Египта далеко. Он живет на острове недалеко от Египта у своего родственника. Пифагор учится астрологии, предсказанию затмений, тайнам чисел, медицине и другим обязательным для того времени наукам. Отуда путь Пифагора лежит в Милет — к знаменитому Фалесу, основателю первой в истории философской школы. От него принято вести историю греческой философии.

Наконец добравшись до Египта благодаря покровительству своих друзей Пифагор знакомится со жрецами. Ему удается проникнуть в «святая святых»- египетские храмы, куда чужестранцы не допускались. Чтобы приобщиться к тайнам египетских храмов, Пифагор, следуя традиции, принимает посвящение в сан жреца. Учеба Пифагора в Египте способствует тому, что он сделался одним из самых образованных людей своего времени.

Пифагор и Геометрия Многое сделал ученый в геометрии. Особенное внимание он уделял числам и их свойствам, стремясь познать смысл и природу вещей. Посредством чисел он пытался осмыслить вечные категории бытия, как справедливость, смерть, постоянство, мужчина, женщина и прочее. Число для Пифагора было и материей, и формой Вселенной. Пифагор и его последователи своими работами заложили основу очень важной области математики — теории чисел.

Последователи Философа В новое время, особенно благодаря бурному развитию естествознания, астрономии и математики, идеи Пифагора приобретают новых поклонников. Великие Коперник и Кеплер,, гениальный Леонардо да Винчи, английский астроном Эддингтон, подтвердивший в 1919 году теорию относительности, и многие другие ученые продолжают находить в научно-философском наследии Пифагора необходимое основание для установления закономерностей нашего мира.

Правила Пифагорейской школы Авторы: Чупрунов А., Рыжковская Д., Растворова А., Быстрицкая У.

Школа Пифагора История создания Жизнь учеников в школе Принципы обучения Правила школы

История создания Школа Пифагора создается как организация со строго ограниченным числом учеников из аристократии, и попасть в неё было непросто. Претендент должен был выдержать ряд тяжелейших испытаний. Другим законом организации было хранение тайны, несоблюдение которой строго каралось. В меню

Жизнь учеников в школе Пифагорейцы просыпались с рассветом, пели песни, аккомпанируя себе на лире, потом делали гимнастику, занимались теорией музыки, философией, математикой, астрономией и другими науками. Часто занятия проводились на открытом воздухе, в форме бесед. В меню

Принципы обучения Пифагоризм определил число как принцип, придав научному объекту универсальное значение (приём, использованный позже и другими философиями). В меню

Правила школы Делай лишь то, что впоследствии не огорчит тебя и не принудит раскаиваться. Не делай никогда того, чего не знаешь. Но научись всему, что следует знать. Не пренебрегай здоровьем своего тела… Приучайся жить просто и без роскоши. Не закрывай глаз, когда хочется спать, не разобравши всех своих поступков в прошлый день. В меню

Спасибо за внимание! “Понять Божественную Суть – вот назначение высшее души, что послана Творцом на Землю!” Пифагор

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Достроим треугольник до квадрата со стороной (a+b). Sкв=(a+b)² S∆= ½·ab Sкв=4·S∆+S S=4·½ab+c² Sкв=2ab+c² (a+b)²=2ab+c² a²+2ab+b²=2ab+c c²=a²+b²

Спасибо за просмотр

Применение теоремы Пифагора к решению прямоугольных треугольников: Находим гипотенузу по известным катетам Находим катет по гипотенузе и второму катету

Находим гипотенузу по известным катетам. Дано: ABC-прямоугольный а ; в — катеты а = 1,2 в = 0,5 с — ? А В С a b c По Теореме Пифагора с2 = а2 + в2 с2 = 1,22 + 0,52 с2 = 1,44 + 0,25 с2 = 1,69 с = 1,69 с = — 1,69 с = 1,3 с = — 1,3 (не удовлетворяет условиям задачи) ОТВЕТ: с = 1,3

Находим катет по гипотенузе и второму катету. А b c С B a АВС – прямоугольный в = 6 (катет) с = 10 (гипотенуза) а — ? Дано: По теореме Пифагора с2 = а2 + в2 а2 = с2 – в2 а2 = 102 – 62 а2 = 100 – 36 а2 = 64 а = 64 a = — 64 a = 8 a = — 8 ОТВЕТ: а = 8 (не удовлетворяет условиям задачи)

Прямоугольные треугольники, у которых длины сторон выражаются целыми числами, называются пифагоровыми треугольниками. Треугольники со сторонами 3,4,5 часто называют египетскими треугольниками.

Пестиков Игорь Ромашов Степан Топоркова Екатерина

Презентация на тему «Треугольник Пифагора»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Описание презентации по отдельным слайдам:

Презентация на тему: «Пифагор и его египетский треугольник» Выполнил: уч-ся МБОУ СШ №2 г.Лукоянова Дядякин Александр Руководитель: учитель математики Замелина А.В.

Пифагор (др.-греч. Πυθαγόρας ὁ Σάμιος, лат. Pythagoras; 570—490 гг. до н. э.) — древнегреческий философ, математик и мистик, создатель религиозно-философской школы пифагорейцев.

В современном мире Пифагор считается великим математиком и космологом древности, однако ранние свидетельства до III в. до н. э. не упоминают о таких его заслугах. Как пишет Ямвлих про пифагорейцев: «У них также был замечательный обычай приписывать всё Пифагору и нисколько не присваивать себе славы первооткрывателей, кроме, может быть, нескольких случаев.»

Египетский треугольник — прямоугольный треугольник с соотношением сторон 3:4:5.

Особенностью такого треугольника, известной ещё со времён античности, является то, что все три стороны его целочисленны, а по теореме Пифагора он прямоуголен. Египетский треугольник является простейшим (и первым известным) из Героновых треугольников — треугольников с целочисленными сторонами и площадями.

Название треугольнику с таким отношением сторон дали эллины: в VII—V веках до н. э. греческие философы и общественные деятели активно посещали Египет. Так, например, Пифагор в 535 до н. э. по настоянию Фалеса для изучения астрономии и математики отправился в Египет — и, судя по всему, именно попытка обобщения отношения квадратов, характерного для египетского треугольника, на любые прямоугольные треугольники и привела Пифагора к доказательству знаменитой теоремы.

Общепринято мнение, что египетский треугольник с соотношением сторон 3:4:5 активно применялся для построения прямых углов египетскими землемерами и архитекторами, например, при построении пирамид.

Для построения прямого угла использовался шнур или верёвка, разделённая отметками (узлами) на 12 (3+4+5) частей: треугольник, построенный натяжением такого шнура, с весьма высокой точностью оказывался прямоугольным и сами шнуры-катеты являлись направляющими для кладки прямого угла сооружения.

В архитектуре средних веков египетский треугольник применялся для построения схем пропорциональности.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 963 человека из 80 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 309 человек из 70 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 676 человек из 74 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 555 246 материалов в базе

Материал подходит для УМК

«Математика», Никольский С.М., Потапов М.К., Решетников Н.Н. и др.

Глава 1. Отношения, пропорции, проценты

Другие материалы

  • 16.10.2018
  • 2287
  • 4

  • 16.10.2018
  • 454
  • 1

  • 15.10.2018
  • 509
  • 14

  • 15.10.2018
  • 16738
  • 234

  • 15.10.2018
  • 20854
  • 599

  • 15.10.2018
  • 730
  • 0

  • 15.10.2018
  • 850
  • 88

  • 14.10.2018
  • 370
  • 0

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 18.10.2018 671
  • PPTX 787.8 кбайт
  • 6 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Замелина Алевтина Васильевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 3 года и 4 месяца
  • Подписчики: 0
  • Всего просмотров: 2044
  • Всего материалов: 4

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Петербургская учительница уволилась после чтения на уроке Введенского и Хармса

Время чтения: 3 минуты

Полный перевод школ на дистанционное обучение не планируется

Время чтения: 1 минута

В Египте нашли древние школьные «тетрадки»

Время чтения: 1 минута

Общество «Знание» в 2022 году планирует запустить серию хакатонов и школу лекторов

Время чтения: 2 минуты

У детей на портале госуслуг появятся собственные аккаунты

Время чтения: 1 минута

У 76% российских учителей оклад ниже МРОТ

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


источники:

http://ppt4web.ru/geometrija/teorema-pifagora-dlja-treugolnika.html

http://infourok.ru/prezentaciya-na-temu-treugolnik-pifagora-3301859.html