Отношение площади треугольника и треугольника

Отношение площади треугольника и треугольника

В элементарной математике, самыми трудными считаются геометрические задачи. Как научиться решать геометрические задачи, особенно сложные, конкурсные? При решении геометрических задач, как правило, алгоритмов нет, и выбирать наиболее подходящую к данному случаю теорему не просто. Поэтому, желательно в каждой теме выработать какие-то общие положения, которые полезно знать всякому решающему геометрические задачи.
Предлагаем один из алгоритмов решения многих геометрических задач – метод площадей, т.е. решение задач с использованием свойств площадей.

Основные свойства площадей.

Свойство №1

Если вершину треугольника передвигать по прямой, параллельной основанию, то площадь при этом не измениться. Доказательство: Рассмотрим ▲ ABC и ▲ ADC. Они имеют общее основание и равные высоты, так как прямые AC и BD параллельные, то расстояние между ними равно h — высоте ▲ ABC и ▲ ADC . Если площадь треугольника находится по формуле $$S = \frac<1> <2>\cdot a \cdot h$$, то $$S_ = S_ = \frac<1> <2>\cdot AC \cdot h$$.

Свойство №2

Доказательство: Пусть h1 = h2 в двух треугольниках с основаниями a и b.
Рассмотрим отношение площадей этих треугольников $$\frac>>= \frac<\frac<1> <2>\cdot a \cdot h_<1>><\frac<1> <2>\cdot b \cdot h_<2>>$$.
Упростив, получим $$\frac>>= \frac$$.

Доказательство: Рассмотрим ▲ABC и ▲MBN с общим углом B , где AB = a, BC = b, MB = a1и NB = b1. Пусть S1 = SMBN и S2 = SABC . Используя формулу площади треугольника вида $$S = \frac<1> <2>\cdot a \cdot b \cdot sin\gamma$$, рассмотрим отношение площадей ▲ABC и ▲MBN .

Свойство №4

Отношение площадей подобных треугольников равны квадрату коэффициента подобия.

Свойство №3

Если два треугольника имеют общий
угол, то их площади относятся как произведение сторон, заключающих
этот угол.

Доказательство: Рассмотрим ▲ABC и ▲MBN . Пусть AB = k MB, BC = k NB и $$\angle ABC = \angle MBN$$. Используя формулу площади треугольника вида $$S = \frac<1> <2>\cdot a \cdot b \cdot sin\gamma$$ , рассмотрим отношение подобных площадей ▲ABC и ▲MBN . Тогда $$\frac>> = \frac<\frac<1> <2>\cdot AB \cdot BC \cdot sin B><\frac<1> <2>\cdot MB \cdot NB \cdot sin B>= \frac = k^<2>$$ .

Медиана треугольника делит его на две равновеликие части.

Доказательство: Рассмотрим ▲ABC . Пусть медиана BM , тогда $$AM = MC = \frac<1><2>AC$$. Медиана делит треугольник на два с одинаковой высотой. Найдем площади треугольников ▲ABM и ▲MBC по формуле $$S = \frac<1><2>\cdot a \cdot h$$. Получим $$S_ = \frac<1><2>\cdot AM \cdot h$$ и $$S_ = \frac<1><2>\cdot MC \cdot h$$. Значит $$S_ = S_$$.

Свойство №6

Медианы треугольника делят его на три равновеликие части. Доказательство: Рассмотрим ▲ABC . Проведем медианы из всех вершин, которые пересекаются в точке O. Получим треугольники ▲AOB , ▲BOC , ▲AOC . Пусть их площади равны соответственно S1, S2, S3. А площадь ▲ABC равна S. Рассмотрим ▲ABK и ▲CBK , они равной площади, т.к. BK медиана. В треугольнике ▲AOC OK — медиана, значит площади треугольников ▲AOK и ▲COK равны. Отсюда следует, что S1 = S2 . Аналогично можно доказать, что S2 = S3 и S3 = S1 .

Средние линии треугольника площади S отсекают от него треугольники площади .

Доказательство: Рассмотрим ▲ABC . NM — средняя линия в треугольнике и она равна половине основания AC. Если SABC = S , то $$S_ = \frac<1> <2>\cdot NM \cdot h_<1>= \frac<1><2>(\frac<1> <2>\cdot AC)(\frac<1><2>\cdot h) = \frac<1><4>\cdot S$$. Аналогично можно доказать, что площади всех треугольников равны одной четвертой части площади ▲ABC .

Медианы треугольника делят его на 6 равновеликих частей.

Основные свойства площадей треугольников

Факт 1.
\(\bullet\) Средние линии треугольника разбивают его на 4 равных треугольника.
Соответственно, площади этих треугольников равны.

Факт 2.
\(\bullet\) Медиана треугольника делит его на два треугольника, равных по площади (равновеликих).

Факт 3.
\(\bullet\) Все 3 медианы треугольника делят его на 6 равновеликих треугольников.

Факт 4.
\(\bullet\) Площади треугольников, имеющих одинаковый угол, относятся как произведения сторон, образующих этот угол.

Факт 5.
\(\bullet\) Площади треугольников, имеющих одинаковое основание, относятся как высоты, проведенные к этим основаниям.

Факт 6.
\(\bullet\) Площади треугольников, имеющих одинаковую высоту, относятся как основания, к которым проведена эта высота.

Факт 7.
\(\bullet\) Если прямые \(p\) и \(q\) параллельны, то

Факт 8.
\(\bullet\) Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
\(\bullet\) Отношение периметров подобных треугольников равно коэффициенту подобия.

51. Планиметрия Читать 0 мин.

51.506. Отношения

Зачастую в геометрических задачах в условии даются отношения отрезков и площадей или отношение отрезков нужно найти. Существует ряд теорем и свойств фигур и их элементов, в которых так или иначе используются отношения.

ОТНОШЕНИЯ ОТРЕЗКОВ:

1. Все медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2 к 1, считая от вершины: AO : AM = 2 : 1.

2. Средняя линия треугольника равна половине основания: $MN = \frac<1><2>BC$

3. Медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна ее половине $CM = \frac<1><2>AB$

4. Диагонали параллелограмма точкой пересечения делятся пополам.

Произвольный параллелограмм или ромб:

Прямоугольник или квадрат:

ОТНОШЕНИЯ ПЛОЩАДЕЙ:

1. Медиана разбивает треугольник на два равновеликих (по площади) треугольника: $S_ = S_ = S$

2. Треугольник делится тремя медианами на шесть равновеликих треугольников:

3. Если площадь треугольника равна S, то площадь треугольника, составленного из его медиан, равна $\frac<3><4>S$

ЛЕММЫ О ПЛОЩАДЯХ ТРЕУГОЛЬНИКА:

Площади подобных фигур относятся как квадрат коэффициента подобия.

Если стороны треугольников с общей вершиной лежат на одной прямой, то их площади относятся как основания.

Если два треугольника имеют общую сторону, то их площади соотносятся как длины отрезков BE и OE.

Если два треугольника имеют общий угол, то их площади соотносятся как произведения соответствующих сторон, прилежащих к этому углу.

Лемма 4 применима даже в том случае, если точки нового треугольника были взяты не на сторонах, а на продолжениях сторон. Пусть точка Е лежит на продолжении стороны AB за вершину В.


источники:

http://shkolkovo.net/theory/119

http://reshutest.ru/theory/7?theory_id=289