Отношение площадей треугольников имеющих

Теорема об отношении площадей треугольников, имеющих по равному углу. 8-й класс

Класс: 8

Презентация к уроку

Загрузить презентацию (988 кБ)

Девиз урока: «Дорогу осилит идущий, а математику – мыслящий»

Тип урока: урок изучения нового материала.

Цели урока:

обучающие:

а) повторение основного теоритического материала;

б) рассмотрение основных задач на вычисление площадей треугольников;

в) доказательство теоремы об отношении площадей треугольников, имеющих по равному углу;

г) закрепление навыков решения в процессе самостоятельного разбора задач.

развивающие:

а) развитие умения планировать полный или частичный ход решения;

б) развитие умения осуществлять целенаправленные поисковые действия умственного плана;

в) развитие интереса к предмету;

г) развитие умения осуществлять самоконтроль.

воспитательные

б) воспитание умения слушать и слышать товарища.

Ход урока

I. Мотивация к учебной деятельности и постановка целей урока.

Учитель приветствует учащихся, поверяет их готовность к уроку, сообщает тему урока, формулирует цели урока. Слайды 1, 2

II. Повторение и актуализация необходимых знаний.

Один ученик готовит теоретический вопрос: сформулировать и доказать теорему о площади треугольника. Один ученик решает задачу у доски.

Задача: Точка E – середина стороны AB треугольника ABC, точки M и H делят сторону BC на три равные части BM = MH = HC. Найдите площадь ∆EMH, если SABC = 72 см 2 .

Рис. 1. Чертеж к условиям задачи

Дано: SABC = 72 см 2 , BM = MH = HC

4 ученика получают задание на карточке (Карточки 2, 3). Остальные учащиеся решают устно по готовым чертежам.

Устно. Слайд 3. 1. Найдите площадь треугольника ABC.

Рис. 2. Чертеж к задаче 1

Слайд 4. 2. Дано: ABCD – квадрат, AB = 5 см, KD = 4 см.

Рис. 3. Чертеж к задаче 2

Слайд 5. 3. Найдите площадь треугольника ABC.

Рис. 4. Чертеж к задаче 3

Слайд 6. 4. BC = 6см, AC = 8см, AB = 10см.

Рис. 5. Чертеж к задаче 4

5. SABC = 72 см 2 , BM = MH = HC

Рис. 6. Чертеж к условию задачи 5

Рис. 7. Теорема о площади треугольника

Слайд 7. Теорема. Площадь треугольника равна половине произведения основания на высоту, проведённую к этой стороне.

Учитель и учащиеся слушают теорему и её доказательство, проверяют решение задачи.

Учитель собирает у 4 учащихся листы с решением задач.

III. Создание проблемной ситуации и формулирование проблемы

Рис. 8. Свойство площадей треугольников, имеющих общую высоту

Слайд 8. Если высоты треугольников равны, то площади относятся как основания.

Рис. 9. Свойство медиан треугольника

Слайд 9. Медиана делит треугольник на два равновеликих треугольника. Три медианы делят треугольник на 6 равновеликих треугольников.

Слайд 10. 1. Решите задачу:

Рис. 10. Чертеж к условию задачи 1

Дано: CM – медиана ∆ABC, CK – медиана ∆ACM. SABC = 40 см 2 .

Найти:

Какую часть площадь одного треугольника составляет от площади другого?

Или. Во сколько раз площадь одного треугольника больше (меньше) площади другого?

Слайд 11. 2. Решите задачу:

Рис. 11. Чертеж к условию задачи 2

Дано: ABCD – выпуклый четырёхугольник.

Вопрос: Как относятся площади треугольников, имеющих по равному углу?

IV. Изучение новой темы

Слайд 12. Теорема. Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведение сторон, заключающих равные углы.

Рис. 12. Теорема о соотношении площадей треугольников, имеющих равный угол

V. Первичное закрепление

Учитель на экране показывает задачи, учащиеся предлагают свои решения задач

Слайд 14. Запишите отношение площадей

Рис. 14. Чертеж к пункту а) Рис. 15. Чертеж к пункту б)

Рис. 16. Чертеж к условию задачи

Ответ: 30/15 или 2.

Рис. 17. Чертеж к условию задачи

Дано: SAOB = 20 см 2 .

VI. Самостоятельная работа

Учитель раздаёт карточки с заданиями двух уровней сложности. (Приложение 2)

Карточка. Уровень А

1) Две стороны треугольника равны 12 см и 9 см, угол между ними 30°. Найдите площадь треугольника. (Ответ: 27 см 2 )

2) AO = 4, BO = 9, CO = 5, DO = 8, SAOC = 15, SDOB = ?

Рис. 18. Чертеж к условию задачи

Уровень Б (для более подготовленных учащихся)

1) В треугольнике ABC ∠A = 45°, BC = 10 см, высота BD делит сторону AC на отрезки: AD = 6 см, DC = 8 см. Найдите площадь треугольника ABC и высоту, проведённую к стороне BC.

Рис. 19. Чертеж к условию задачи

Ответ: 42 см 2 ; 8,4 см.

Рис. 20. Чертеж к условию задачи

OB = OA, OC = 2 • OD, SAOC = 12 см 2 , SBOD = ?

VII. Подведение итогов

Учитель оценивает работу учащихся.

VIII. Домашнее задание (Приложение 3)

Учебник. Учить теорему п. 52. № 479 (а).

Рис. 21. Чертеж к условию задачи

Дано: AO = AB, прямая AC параллельна прямой BD.

Рис. 22. Чертеж к условию задачи

Дано: AO = 3 см, BO = 6 см, CO = 5 см, DO = 4 см.

Литература:

  1. Гаврилова Н.Ф. Поурочные разработки по геометрии: 8 класс. – 2-е изд., перераб. и доп. – М.: ВАКО, 2006. – 368 с.
  2. Геометрия 7 – 9 классы: учеб. для общеобразоват. учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев. – 20-е изд. – М.: Просвещение, 2010. – 384 с.

Основные свойства площадей треугольников

Факт 1.
\(\bullet\) Средние линии треугольника разбивают его на 4 равных треугольника.
Соответственно, площади этих треугольников равны.

Факт 2.
\(\bullet\) Медиана треугольника делит его на два треугольника, равных по площади (равновеликих).

Факт 3.
\(\bullet\) Все 3 медианы треугольника делят его на 6 равновеликих треугольников.

Факт 4.
\(\bullet\) Площади треугольников, имеющих одинаковый угол, относятся как произведения сторон, образующих этот угол.

Факт 5.
\(\bullet\) Площади треугольников, имеющих одинаковое основание, относятся как высоты, проведенные к этим основаниям.

Факт 6.
\(\bullet\) Площади треугольников, имеющих одинаковую высоту, относятся как основания, к которым проведена эта высота.

Факт 7.
\(\bullet\) Если прямые \(p\) и \(q\) параллельны, то

Факт 8.
\(\bullet\) Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
\(\bullet\) Отношение периметров подобных треугольников равно коэффициенту подобия.

Отношение площадей треугольников имеющих

В элементарной математике, самыми трудными считаются геометрические задачи. Как научиться решать геометрические задачи, особенно сложные, конкурсные? При решении геометрических задач, как правило, алгоритмов нет, и выбирать наиболее подходящую к данному случаю теорему не просто. Поэтому, желательно в каждой теме выработать какие-то общие положения, которые полезно знать всякому решающему геометрические задачи.
Предлагаем один из алгоритмов решения многих геометрических задач – метод площадей, т.е. решение задач с использованием свойств площадей.

Основные свойства площадей.

Свойство №1

Если вершину треугольника передвигать по прямой, параллельной основанию, то площадь при этом не измениться. Доказательство: Рассмотрим ▲ ABC и ▲ ADC. Они имеют общее основание и равные высоты, так как прямые AC и BD параллельные, то расстояние между ними равно h — высоте ▲ ABC и ▲ ADC . Если площадь треугольника находится по формуле $$S = \frac<1> <2>\cdot a \cdot h$$, то $$S_ = S_ = \frac<1> <2>\cdot AC \cdot h$$.

Свойство №2

Доказательство: Пусть h1 = h2 в двух треугольниках с основаниями a и b.
Рассмотрим отношение площадей этих треугольников $$\frac>>= \frac<\frac<1> <2>\cdot a \cdot h_<1>><\frac<1> <2>\cdot b \cdot h_<2>>$$.
Упростив, получим $$\frac>>= \frac$$.

Доказательство: Рассмотрим ▲ABC и ▲MBN с общим углом B , где AB = a, BC = b, MB = a1и NB = b1. Пусть S1 = SMBN и S2 = SABC . Используя формулу площади треугольника вида $$S = \frac<1> <2>\cdot a \cdot b \cdot sin\gamma$$, рассмотрим отношение площадей ▲ABC и ▲MBN .

Свойство №4

Отношение площадей подобных треугольников равны квадрату коэффициента подобия.

Свойство №3

Если два треугольника имеют общий
угол, то их площади относятся как произведение сторон, заключающих
этот угол.

Доказательство: Рассмотрим ▲ABC и ▲MBN . Пусть AB = k MB, BC = k NB и $$\angle ABC = \angle MBN$$. Используя формулу площади треугольника вида $$S = \frac<1> <2>\cdot a \cdot b \cdot sin\gamma$$ , рассмотрим отношение подобных площадей ▲ABC и ▲MBN . Тогда $$\frac>> = \frac<\frac<1> <2>\cdot AB \cdot BC \cdot sin B><\frac<1> <2>\cdot MB \cdot NB \cdot sin B>= \frac = k^<2>$$ .

Медиана треугольника делит его на две равновеликие части.

Доказательство: Рассмотрим ▲ABC . Пусть медиана BM , тогда $$AM = MC = \frac<1><2>AC$$. Медиана делит треугольник на два с одинаковой высотой. Найдем площади треугольников ▲ABM и ▲MBC по формуле $$S = \frac<1><2>\cdot a \cdot h$$. Получим $$S_ = \frac<1><2>\cdot AM \cdot h$$ и $$S_ = \frac<1><2>\cdot MC \cdot h$$. Значит $$S_ = S_$$.

Свойство №6

Медианы треугольника делят его на три равновеликие части. Доказательство: Рассмотрим ▲ABC . Проведем медианы из всех вершин, которые пересекаются в точке O. Получим треугольники ▲AOB , ▲BOC , ▲AOC . Пусть их площади равны соответственно S1, S2, S3. А площадь ▲ABC равна S. Рассмотрим ▲ABK и ▲CBK , они равной площади, т.к. BK медиана. В треугольнике ▲AOC OK — медиана, значит площади треугольников ▲AOK и ▲COK равны. Отсюда следует, что S1 = S2 . Аналогично можно доказать, что S2 = S3 и S3 = S1 .

Средние линии треугольника площади S отсекают от него треугольники площади .

Доказательство: Рассмотрим ▲ABC . NM — средняя линия в треугольнике и она равна половине основания AC. Если SABC = S , то $$S_ = \frac<1> <2>\cdot NM \cdot h_<1>= \frac<1><2>(\frac<1> <2>\cdot AC)(\frac<1><2>\cdot h) = \frac<1><4>\cdot S$$. Аналогично можно доказать, что площади всех треугольников равны одной четвертой части площади ▲ABC .

Медианы треугольника делят его на 6 равновеликих частей.


источники:

http://shkolkovo.net/theory/119

http://uztest.ru/abstracts/?idabstract=440813