1 аксиомы аксиома параллельных прямых 2 следствия из аксиомы

Геометрия. 7 класс

Конспект урока

Аксиома параллельных прямых

Перечень рассматриваемых вопросов:

  • Аксиомы и теоремы.
  • Исторические сведения об аксиоматическом построении евклидовой геометрии.
  • Параллельные и перпендикулярные прямые.
  • Признаки параллельности прямых.
  • Решение задач на доказательство параллельности прямых.

Аксиома – это утверждение, которое принимается в качестве исходного, без доказательства в рамках данной теории.

Аксиома параллельных прямых.

Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Следствия из аксиомы.

Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Если две прямые, параллельны третьей прямой, то они параллельны.

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения

Геометрия на плоскости изучает фигуры: сначала даются их определения, затем доказываются свойства или отношения в виде теорем.

Однако есть утверждения, которые принимаются в качестве исходных, они не доказываются. Это аксиомы.

Аксиома – происходит от греческого «аксиос», что означает «ценный, достойный». Изначально имело смысл «самоочевидная истина».

Теорема – греческое слово, означает «зрелище, представление». В математике греков употреблялось в смысле «истина, доступная созерцанию».

Аксиома параллельных прямых.

Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Следствия из аксиомы.

Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Если две прямые параллельны третьей прямой, то они параллельны.

Впервые аксиоматический подход к изложению геометрии был изложен в знаменитом сочинении Евклида «Начала» в III веке до нашей эры. Геометрию, которую мы изучаем, по сей день, называют евклидовой. Схема изучения геометрии представлена так: задаются начальные понятия (точка, прямая, плоскость), определения фигур (отрезок, луч, треугольник и др.). Затем изучаются свойства или отношения между ними в виде аксиом или теорем.

Приведём примеры аксиом, которые уже встречали в предыдущих параграфах, хотя они не назывались аксиомами.

  • Через любые две точки проходит прямая, и притом только одна.
  • На любом луче от его начала можно отложить отрезок, равный данному, и притом только один.
  • От любого луча можно отложить угол, равный данному неразвёрнутому углу, и притом только один.

Евклид является автором аксиоматического подхода к построению геометрии.

Аксиома параллельных прямых:

через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

На рисунке через точку М проведены две прямые. Но только одна из них прямая b параллельна прямой а.

Утверждения, которые выводятся из аксиом или теорем, называются следствиями, и они доказываются.

Следствия из аксиомы параллельных прямых.

1. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Доказательство методом от противного.

Пусть ab, c пересекает прямую a в точке M. Предположим, что прямая c не пересекает b. Тогда через точку M проходит две прямые a и c параллельные b. Это противоречит аксиоме, значит предположение неверно, т. е. прямая c пересекает b.

2. Если две прямые параллельны третьей прямой, то они параллельны.

Доказательство методом от противного.

Пусть a ║ c, b ║ c.

Предположим, что прямые a и b не параллельны, т. е. пересекаются в точке M. Тогда через точку M проходит две прямые a и b параллельные c. Это противоречит аксиоме, значит, предположение неверно, т. е. прямая a параллельна прямой b.

Разбор заданий тренировочного модуля

№ 1. Доказать существование прямой, параллельной данной.

  1. Проведём через точку М прямую c ┴ а.
  2. Затем проведём прямую bc.
  3. Так как прямые a и b перпендикулярны прямой c, то они параллельны.

№ 2. Через точку А, не лежащую на прямой р, проведены четыре различные прямые.

Сколько из них пересекает прямую р?

1 случай. Если одна из прямых параллельна р. Тогда три других пересекают прямую р, согласно следствию 1 из аксиомы параллельных прямых.

2 случай. Если ни одна из прямых не параллельна р. Тогда все четыре пересекают прямую р.

Свойства параллельных прямых

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

С помощью данного видеоурока вы сможете самостоятельно изучить тему «Свойства параллельных прямых». В ходе него вам предстоит параллельные прямые, рассмотреть их свойства, а также сформулировать одну из самых важных аксиом геометрии.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Основы геометрии»

Аксиома параллельных прямых

Средняя оценка: 4.2

Всего получено оценок: 112.

Средняя оценка: 4.2

Всего получено оценок: 112.

Аксиома параллельных прямых – это один из постулатов Евклидовой геометрии, на которой построено доказательство всех современных теорем стереометрии. Это определение не только математическое, но и историческое. Именно о формулировке, истории появления и интересном признаке, который следует из этих утверждений и пойдет речь сегодня.

Немного истории

Почти все современные источники приписывают формулировку аксиомы Евклиду, но на самом деле родоначальник геометрии сформулировал немного другую аксиому, а вернее даже не аксиому, а скорее признак. Что интересно, его долгое время пытались опровергнуть, но сегодня перестали.

Пятый постулат или аксиома Евклида звучит так: Если при пересечении двух прямых третьей, сумма односторонних углов менее 180 градусов, то такие прямые пересекаются, при том с той стороны, где сумма углов меньше 180.

Ничего не напоминает? Конечно же, это третий признак параллельности прямых, вывернутый наизнанку: две прямые параллельны, если односторонние углы в сумме дают 180 градусов.

А современная трактовка аксиомы: Через точку в плоскости может быть проведена одна и только одна прямая параллельная данной – принадлежит другому древнегреческому математику – Проклу. Вот такая небольшая историческая ошибка.

Формулировка

Но кто бы там ни был автором аксиомы, в любой задаче и при любом доказательстве, нужно иметь в виду: утверждение зовется аксиомой параллельных прямых и формулируется так: через точку на плоскости можно провести только одну прямую параллельную данной.

Следствия

Эта аксиома имеет два следствия, которые еще называют свойствами параллельных прямых.

На самом деле, следствий три, но третье в своем доказательстве имеет не только аксиому, а поэтому следствием в полной мере считаться не может. Формулируется третье следствие так: Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и второй. Мы докажем это утверждение чуть позже.

Первое следствие из аксиомы параллельных прямых звучит так: если прямая параллельна одной из параллельных прямых, то она параллельна и третьей.

Рис. 1. Иллюстрация следствия.

Второе следствие: Если прямая пересекает одну из параллельных прямых, то она пересечет и вторую.

Оба следствия доказываются методом от противного.

Задача

Третье следствие всегда доказывается учениками как задача. Итак, необходимо доказать, что если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и второй.

Рис. 3. Рисунок к задаче.

Проведем две параллельные прямые а и b. Прямая с перпендикулярна прямой а. Это значит, что прямая с пересекает прямую а, то есть по следствия 2 из аксиомы о параллельности прямых, прямая с пересечет и прямую b, так как b и а параллельны.

Обратим внимание на углы 1 и 2 – они являются односторонними при параллельных прямых а и b, и секущей с. Значит, сумма этих углов должна равняться 180 градусам по свойству параллельных прямых. Но угол 1 известен, так как а перпендикулярна с, то угол равен 90 по определению перпендикулярности.


источники:

http://interneturok.ru/lesson/geometry/7-klass/parallelnye-pryamye/svoystva-parallelnyh-pryamyh

http://obrazovaka.ru/geometriya/aksioma-parallelnyh-pryamyh-sledstviya.html